Читать книгу Цифровая трансформация для директоров и собственников. Часть 1. Погружение - Джимшер Бухутьевич Челидзе - Страница 24
Глава 2. Технологии. Плюсы, минусы, личное мнение
Нейросети, машинное и глубокое обучение (ML & DL), системы распознавания речи и текста
ОглавлениеВот мы и подобрались к будущему – нейросетям, искусственному интеллекту, восстанию машин и прочим страшилкам.
Нейросети, пожалуй, самая интересная технология. При поддержке интернета вещей, 5G и больших данных она принесёт в нашу жизнь революционные изменения.
При этом искусственный интеллект – это любой математический метод, который позволяет имитировать человеческий интеллект.
Ох, как наши любимые рекламщики и маркетологи довольны… Теперь любую, самую простую нейросеть можно гордо назвать «Искусственным Интеллектом».
Но искусственный интеллект ещё разделяют на сильный и слабый. В 2019 году учёные из МФТИ приблизились к созданию сильного ИИ – аналога человеческого сознания. Это способность не просто отличить ручку от карандаша или кошку от собаки (по такому принципу работают все нейросети, это слабый ИИ), но и ориентироваться в меняющихся условиях, выбирать конкретные решения, моделировать и прогнозировать развитие ситуации.
Еще один пример появление сильного ИИ доступен по QR и ссылке
Опубликован диалог с «разумным» ИИ Google LaMDA, который называет себя человеком
Сильный ИИ будет незаменим в системах интеллектуального транспорта и грузоперевозок, когнитивных ассистентах. Но это будущее, а что есть сейчас?
Сейчас есть обучаемые нейросети. Искусственная нейронная сеть – это математическая модель, созданная по подобию нейросетей, составляющих мозг живых существ. Такие системы учатся выполнять задачи, рассматривая их без специального программирования под конкретное применение. Это можно встретить в Яндекс Музыке, автопилотах Теслы, в системах рекомендации для врачей и управленцев.
И здесь 2 главных тренда:
• машинное обучение (ML – machine learning);
• глубокое обучение (DL – deep learning).
Машинное обучение – это статистические методы, позволяющие компьютерам улучшить качество выполняемой задачи с накоплением опыта и дообучения. То есть речь идёт как раз о том, как работают нейронные сети живых организмов.
Глубокое обучение – это не только обучение машины с помощью человека, который говорит, что верно, а что нет, но и самообучение систем. Это одновременное использование различных методик обучения и анализа данных.
Но как обучают эти нейросети? В чём магия?
А собственно, ни в чём. Это как дрессировка собаки. Нейросети раз за разом показывают, например, картинку и говорят, что на ней изображено. Потом нейросеть должна сама ответить, и, если ответ ошибочный, в неё вносят корректировки. Примерный алгоритм указан ниже.
В итоге получается, что каждый «нейрон» такой сети учится распознавать, относится к нему эта картинка, точнее её часть, или нет.
Нейросети и машинное обучение применяются:
Принцип работы нейросети
• для прогнозирования и принятия решений;
• распознавания образов, в том числе «картинок» и голосовых записей;
• анализа сложных данных без чётких взаимосвязей;
• оптимизации процессов.
Прикладное значение этого можно увидеть на примерах создания беспилотных авто (принятие решений), поиска незаконного контента (анализ данных), прогнозирования болезней (распознавание образов и поиск связей).
Ладно, всё это теория. Я же хочу поделиться реальным примером, как можно применять нейросети в бизнесе.
Летом 2021 года ко мне обратился один предприниматель из риелторской сферы. Он занимается арендой недвижимости, в том числе посуточно. Его цель – увеличение пула сдаваемых квартир и смена статуса предпринимателя на полноценную организацию. В ближайших планах запуск сайта и мобильного приложения.
Сложилось так, что я сам был его клиентом. И при нашей встрече заметил очень большую проблему – долгую подготовку договора: на оформление всех реквизитов и подписание уходит до 30 минут. А это и ограничение системы с генерированием потерь, и неудобство для клиента.
Представьте ситуацию, что вы хотите провести время с девушкой, но вынуждены ждать полчаса, пока ваши паспортные данные внесут в договор, всё сверят и подпишут.
Сейчас есть лишь один вариант исключить это неудобство – запрашивать фото паспорта заранее и вручную вносить все данные в шаблон договора. Как вы понимаете, это тоже не очень удобно.
Как же цифровые инструменты помогут решить эту проблему, а заодно заложат основу для работы с данными и аналитикой?
• Можно попробовать провести интеграцию с «Госуслугами». Тогда человек сможет авторизоваться через их учётку – там паспортные данные уже выверены и будет легче использовать их для последующей аналитики. Правда, если вы не государственная компания, то получить доступ к авторизации через данный сервис – та ещё задача.
• Подключение нейросети. Клиент присылает фото паспорта, нейросеть распознаёт данные и вносит в шаблон или базу. Остаётся лишь распечатать готовый договор или подписать в электронном виде. И преимущество здесь в том, что все паспорта стандартизированы. Серия и номер всегда напечатаны одним цветом и шрифтом, код подразделения тоже, а перечень выдавших подразделений не очень большой. Обучить такую нейросеть можно легко и быстро. Справится даже студент в дипломной работе. В итоге бизнес экономит на разработке, а студент получает актуальную дипломную работу. Кроме того, при каждой ошибке нейросеть будет становиться всё умнее.
В итоге вместо 30 минут подписание договора занимает около 5. То есть при восьмичасовом рабочем дне 1 человек сможет заключать не 8 договоров (30 минут на оформление и 30 минут на дорогу), а 13—14. И это при консервативном подходе – без электронного подписания, доступа в квартиру через мобильное приложение и смарт-замки. Но я считаю, что сразу внедрять «навороченные» решения и не надо. Высока вероятность потратить деньги на то, что не создаёт ценности и не снижает издержек. Это будет следующий шаг. После того как клиент получит результат и компетенции.
Также приведу ещё 2 реальных применения нейросетей и машинного обучения:
• «МегаФон» поможет бизнесу оперативно выявлять конфликтные диалоги с клиентами на основе анализа разговоров;
• Яндекс. Браузер внедрил машинный перевод видеороликов.
Ограничения
Лично я вижу следующие ограничения в данном направлении.
• Качество и количество данных. Нейросети требовательны к качеству и количеству исходных данных. Но эта проблема решается. Если ранее нейросети необходимо было прослушать несколько часов аудиозаписи, чтобы синтезировать вашу речь, то сейчас достаточно нескольких минут. А для нового поколения потребуется всего несколько секунд. Но тем не менее им всё равно нужно много размеченных и структурированных данных.
• Качество «учителей». Нейросети обучают люди. И здесь очень много ограничений: кто и чему учит, на каких данных, для чего.
• Этическая составляющая. Я имею в виду вечный спор, кого сбить автопилоту в безвыходной ситуации: взрослого, ребёнка или пенсионера. Подобных споров бесчисленное множество. Для искусственного интеллекта нет этики, добра и зла.
• Готовность людей. Нужно ожидать огромного сопротивления людей, чью работу заберут сети.
• Страх перед неизвестным. Рано или поздно нейросети станут умнее нас. И люди боятся этого, а значит, будут тормозить развитие и накладывать многочисленные ограничения.
P.S.
Машинное обучение движется ко всё более низкому порогу вхождения. Совсем скоро это будет как конструктор сайта, где для базового применения не нужны специальные знания и навыки.
Создание нейросетей и дата-сайнс уже сейчас развивается по модели «сервис как услуга», например DSaaS – Data Science as a Service.
Знакомство с машинным обучением можно начинать с AUTO ML, его бесплатной версией, или DSaaS с проведением первичного аудита, консалтинга и разметкой данных. При этом даже разметку данных можно получить бесплатно. Всё это снижает порог вхождения.
Также будут создаваться отраслевые нейросети. В том числе всё активнее будет развиваться направление рекомендательных сетей.