Читать книгу В поисках кота Шредингера. Квантовая физика и реальность - Джон Гриббин - Страница 23
Часть первая
Квант
Глава четвертая
Атом бора
Водород получает объяснение
ОглавлениеОбсудив свою работу с Резерфордом, в серии статей в 1913 году Бор опубликовал собственную теорию атома. Теория хорошо работала для водорода, и казалось, что она может быть развита дальше, чтобы объяснить также спектры более сложных атомов. В сентябре Бор посетил восемьдесят третью ежегодную встречу Британской ассоциации развития науки и представил свою работу аудитории, которая в основном состояла из самых именитых физиков того времени. В общем и целом его доклад восприняли хорошо, а сэр Джеймс Джинс назвал его изобретательным, убедительным и заставляющим задуматься. Дж. Дж. Томсон оказался в числе тех, кого доклад не убедил, однако именно благодаря этой встрече ученые, которые сочли аргументы недостаточными, хотя бы услышали о Боре и его работе над атомами.
Спустя тринадцать лет с отчаянного решения Планка ввести квант в теорию света Бор ввел квант в теорию атома. Однако потребовалось еще тринадцать лет, чтобы появилась настоящая квантовая теория. В то время прогресс шел болезненно медленно – нужно было делать шаг назад, чтобы потом продвигаться на два шага вперед, а иногда и два шага назад взамен на один шаг в правильном направлении. Атом Бора представлял собой настоящую мешанину. Он сочетал квантовые идеи с классическими, используя любую кажущуюся необходимой смесь, чтобы сметать куски и сделать модель работоспособной. Он «разрешал» существование гораздо большего количества спектральных линий, чем наблюдалось в излучении различных атомов, и приходилось вводить произвольные правила, чтобы некоторые переходы между различными энергетическими состояниями в атоме стали «запрещенными». Новые свойства атома – квантовые числа – назначались от случая к случаю, чтобы соответствовать наблюдениям, хотя не существовало должного теоретического обоснования того, зачем нужны были эти квантовые числа или почему некоторые из переходов оказывались запрещены. В процессе этого европейский мир потрясло начало Первой мировой войны, разразившейся на следующий год после того, как Бор представил свою первую модель атома.
Как и любая другая сфера жизни, наука после 1914 года уже не могла быть прежней. Из-за войны ученые больше не могли свободно переезжать из одной страны в другую. Начиная с Первой мировой войны некоторым ученым из ряда стран стало трудно общаться с коллегами по всему миру. Война также оказала прямое воздействие на научные исследования в крупных исследовательских центрах, где в начале XX века физики добились существенного прогресса. В условиях войны многие молодые ученые покинули лаборатории и ушли на фронт, оставив более зрелых профессоров вроде Резерфорда продолжать исследования в одиночку. Многие из этих юношей, представителей поколения, которое должно было подхватить идеи Бора и начало подхватывать их в 1913-м, погибли в боях. Война повлияла и на работу нейтральных ученых, хотя в некотором роде они получили преимущество из-за проблем остальных. Сам Бор стал лектором физики в Манчестере, в Геттингене голландец Петер Дебай хорошо изучил структуру кристаллов, используя рентгеновские лучи. В то время Дания и Голландия стали настоящими научными оазисами, и в 1916 году Бор вернулся в Данию, где стал профессором теоретической физики в Копенгагене, а в 1920 году основал исследовательский институт, названный в его честь. Вести от немецкого исследователя Арнольда Зоммерфельда (одного из физиков, которые улучшили модель атома Бора, внесшего в нее такой вклад, что иногда эту модель называют «атомом Бора – Зоммерфельда») могли приходить в нейтральную Данию, а затем от Бора – к Резерфорду, находившемуся в Англии. Прогресс продолжался, но все уже было иначе.
После войны немецких и австрийских ученых многие годы не приглашали на международные конференции, Россия оказалась охвачена пламенем революции, а наука вместе с молодыми исследователями потеряла и свой международный характер. Совершенно новому поколению предстояло подхватить квантовую теорию, которая остановилась в своем развитии на полпути после представления запутанного атома Бора (который, стоит признать, был значительно улучшен благодаря усилиям многих ученых и стал эффективной, хоть и беспорядочной моделью), и привести ее к расцвету. Имена исследователей этого поколения знакомы любому современному физику: Вернер Гейзенберг, Поль Дирак, Вольфганг Паули, Паскуаль Йордан и другие. Представители первого квантового поколения, они все родились и выросли уже после великого открытия Планка (Паули в 1900 году, Гейзенберг в 1901-м, Дирак и Йордан – в 1902-м) и пришли в науку в 1920-х годах. Им не нужно было преодолевать прочно засевшие в сознании идеи классической физики, и они, в отличие от великих ученых вроде Бора, уже не чувствовали необходимости идти на полумеры и сохранять связь с классическими идеями, представляя свои концепции атома. Все это было абсолютно закономерно: вероятно, не было совпадением и то, что с момента открытия Планком уравнения излучения абсолютно черного тела до расцвета квантовой физики прошло всего двадцать шесть лет – ровно столько, сколько нужно было новому поколению физиков, чтобы превратиться в настоящих исследователей. Более старшие ученые, которые все еще принимали активное участие в работе, оставили этому поколению в наследство две идеи, помимо самой постоянной Планка. Первой был атом Бора, который явно показал, что квантовые идеи должны быть вплетены в любую удовлетворительную теорию объяснения атомных процессов. Вторая стала заслугой одного великого ученого того времени, который, казалось, наперекор всему никогда не хватался за идеи классической физики. В 1916 году, в разгар войны работая в Германии, Эйнштейн ввел в атомную теорию понятие вероятности. Это была уловка – еще одно дополнение к атому Бора, благодаря которому его поведение стало похожим на наблюдаемое поведение настоящих атомов. Но эта уловка продлила жизнь атома Бора и сделала его крепкой основой истинной квантовой теории – хотя по иронии судьбы впоследствии Эйнштейн сам же отказался от нее, как известно, заявив: «Бог не играет в кости».