Читать книгу В поисках кота Шредингера. Квантовая физика и реальность - Джон Гриббин - Страница 9

Часть первая
Квант
Глава вторая
Атомы
Атомы в XIX столетии

Оглавление

И все же в XIX веке эта идея получала одобрение со стороны химиков весьма медленно. Жозеф Гей-Люссак провел эксперимент, показав, что если соединить два газообразных вещества, то необходимый объем одного газа всегда будет пропорционален объему другого. Если получившаяся смесь также представляет собой газ, то ее объем тоже находится в прямой зависимости от объемов двух других. Это согласуется с идеей о том, что каждая молекула смеси состоит из одного или двух атомов одного газа и нескольких атомов другого. В 1811 году это наблюдение использовал итальянец Амедео Авогадро, который выдвинул знаменитую гипотезу, утверждающую, что вне зависимости от химической природы газа при любой постоянной температуре и давлении равные объемы газа содержат одинаковое число молекул. Чуть позже гипотеза Авогадро была подтверждена экспериментально. Было доказано, что каждый литр газа при температуре 0 градусов Цельсия и давлении в одну атмосферу содержит около 27 000 миллиардов миллиардов (27 × 1021) молекул. Но лишь в 1850-х годах соотечественник Авогадро Станислао Канниццаро развил эту идею настолько, что химики стали воспринимать ее всерьез. Впрочем, еще в 1890-х годах было очень много химиков, отвергавших идеи Дальтона и Авогадро. Однако тогда их обогнало развитие физики – шотландец Джеймс Клерк Максвелл и австриец Людвиг Больцман, используя концепцию атомов, детально объяснили поведение газов.

В 1860-х и 1870-х годах эти первооткрыватели развили идею о том, что газ состоит из огромного числа атомов и молекул (число из гипотезы Авогадро дает вам представление о том, насколько их много), которые можно представить в виде крошечных твердых хаотически движущихся сфер, сталкивающихся друг с другом и со стенками сосуда, содержащего газ. Это напрямую соотносилось с представлением о том, что теплота является формой движения – когда газ нагревается, его молекулы начинают двигаться быстрее, что повышает давление на стенки сосуда, и, если они не закреплены, газ будет расширяться.

Ключевой особенностью этих новых идей было то, что поведение газа может быть объяснено посредством законов механики – то есть законов Ньютона – только статистически, с помощью усреднения очень большого числа атомов или молекул. Любая из молекул газа может в любой момент двигаться в произвольном направлении, однако суммарный эффект от столкновения всех молекул со стенками сосуда создает постоянное давление. Это привело к развитию математического описания газовых процессов, получившего название статистической механики. Тем не менее прямое доказательство существования атомов все еще отсутствовало.

Некоторые ведущие физики того времени упорно противостояли атомной гипотезе, и даже сам Больцман в 1890-х годах чувствовал себя (возможно, ошибочно) одиночкой, плывущим против течения научной мысли. В 1898 году он опубликовал подробные вычисления в надежде, что, «когда теория газов снова оживет, открывать понадобится не слишком много»[3]. В 1906 году, находясь в депрессии из-за болезни и в подавленном состоянии в результате ^прекращавшегося противостояния многих ведущих ученых его кинетической теории газов, Больцман покончил жизнь самоубийством, не подозревая, что за несколько месяцев до этого малоизвестный теоретик по имени Альберт Эйнштейн опубликовал работу, развеявшую все сомнения насчет существования атомов.

3

Цитируется по: Мехра Дж., Рехенберг X. Историческое развитие квантовой теории. Том 1. С. 16.

В поисках кота Шредингера. Квантовая физика и реальность

Подняться наверх