Читать книгу Introduction to Solid State Physics for Materials Engineers - Emil Zolotoyabko - Страница 10

Preface

Оглавление

Powerful personal computers and smart phones, huge flat TV screens and bright shining lights in our streets and city squares, immense fields of solar cells providing clean electrical energy, infrared imaging and laser technologies, strong superconducting magnets used in particle accelerators and medical devices for magnetic resonance imaging (MRI) – all these and many other things surrounding us are the outcome of discoveries and inventions made during the development of solid state physics. It is a rather young branch of science which began to advance only at the beginning of twentieth century. Though, as we see, its impact on society is tremendous and continues to grow with time. For this reason, learning solid state physics is obligatory for materials scientists and engineers.

There exist many excellent solid-state physics textbooks. Some of these, however, especially general books written by theoreticians for physicists, are difficult for materials engineers to use because of the latter's insufficient knowledge in advanced quantum mechanics. Further, these books pay much less attention to key applications (new materials and devices). In contrast, more specialized manuscripts written by experts in specific fields do not provide a big picture since they mostly deal with practically important issues with less emphasis on basic ideas.

Very few books have tried to fill this gap. One of the best, in my opinion, is “Intermediate quantum theory of crystalline solids” by Alexander Animalu from MIT. It was published, however, in 1977, and since then many new branches of solid state physics have been developed, such as high-temperature superconductivity, giant magnetoresistance, photovoltaics, graphene, Mott metal-insulator transitions, quantum Hall effects, topological insulators, etc. All these, as well as traditional classical issues, are described in the present book together with the most important applications such as MOSFET transistors, permanent and superconducting magnets, thermoelectric materials, solar cells and light-emitting diodes, metamaterials, photonic materials, magnetic and ferroelectric memories, SQUID, infrared detectors, and CCD.

To be able to read this book, it is enough to have very basic knowledge of mechanics, thermodynamics, electricity and magnetism, quantum mechanics, plus a little familiarity with statistical physics. More complicated issues or those that could be omitted during a first reading will be found in the Appendices.

Mathematical tools are restricted by simple differential equations, vector algebra and a bit of tensors (matrices), which all are familiar to materials students.

The book comprises 13 chapters, which are used as the basis for 13 lectures of the one-semester solid-state physics course delivered in the Department of Materials Science and Engineering at the Technion-Israel Institute of Technology. Before each chapter, the list of sub-subjects touched upon in it is given, which is wider than the list of numerated subsections. Certainly, not all aspects of solid-state physics are covered. For example, amorphous and highly disordered systems are not within this book's scope. This book is intended for the wide community of undergraduate and graduate students in materials science and engineering, as well as for beginners who for some reasons are interested in particular aspects of solid state physics. In summary, this book can be considered as an extended introduction to the subject, which will enable its readers to be well prepared for understanding of more advanced textbooks, if needed.

Haifa

March 2021

Introduction to Solid State Physics for Materials Engineers

Подняться наверх