Читать книгу Introducción al Machine Learning con MATLAB - Erik Cuevas Jiménez - Страница 13

1.6. Tipos de aprendizajes

Оглавление

En el aprendizaje máquina se conocen tres tipos de aprendizaje: aprendizaje supervisado, aprendizaje no supervisado y aprendizaje por refuerzo. A continuación, se define cada uno de estos tipos de aprendizaje.

Aprendizaje supervisado: se corresponde con el proceso donde se generalizan las relaciones entre las observaciones de sus características de entrada y salida (etiqueta), donde este modelo de «relación» especula una salida (etiqueta) para producir nuevas observaciones. Este tipo de aprendizaje se utiliza cuando se requiere la predicción [4].

Aprendizaje no supervisado: este es un proceso de aprendizaje para generalizar la estructura en los datos donde no se requiere predicción. Las estructuras naturales son identificadas y explotadas para relacionar ciertas observaciones respecto a otras.

Aprendizaje por refuerzo: con este sistema de aprendizaje, llamado agente, se puede observar el entorno, seleccionar y realizar acciones, con la finalidad de obtener recompensas a cambio (o sanciones en forma de recompensas negativas). Luego, debe aprender por sí mismo cuál es la mejor estrategia, llamada política, para obtener la mayor recompensa con el paso del tiempo. Con una política, se define qué acción debe hacer el agente cuando se encuentra en una situación dada [5].

Una vez definidos y comprendidos los tipos de problemas, los tipos de datos y los tipos de aprendizajes, se puede pasar a conocer cuáles son las etapas requeridas para el desarrollo de sistemas basados en el aprendizaje máquina.

Introducción al Machine Learning con MATLAB

Подняться наверх