Читать книгу Introducción al Machine Learning con MATLAB - Erik Cuevas Jiménez - Страница 14

1.7. Etapas de implementación del aprendizaje máquina

Оглавление

La implementación de algoritmos de aprendizaje máquina implica una serie de pasos que son muy similares al proceso de modelado estadístico. Estos se dividen en cinco etapas: recopilación de datos, exploración y preparación de datos, entrenamiento, evaluación del modelo y, por último, mejora del modelo. En la figura 1.1 se pueden observar las etapas de implementación del aprendizaje máquina de una forma esquemática. Cada etapa se define a continuación.

Recopilación de datos: este paso implica reunir el material de aprendizaje que implementará un algoritmo para generar un conocimiento procesable. En la mayoría de los casos, los datos deberán combinarse en una sola fuente, como un archivo de texto, hoja de cálculo o base de datos.

Exploración y preparación de datos: la calidad de cualquier proyecto de aprendizaje automático se basa, en gran medida, en la calidad de sus datos de entrada. Para mejorar la calidad de los datos, estos requieren de una preparación especial para el proceso de aprendizaje. Esta preparación implica arreglar o limpiar los llamados datos «desordenados», eliminando datos innecesarios, y recodificando los datos para ajustarse a las entradas esperadas de la técnica de aprendizaje máquina.

Entrenamiento: ya que los datos han sido preparados, estos alimentan a la técnica o algoritmo específico, el cual construirá un modelo con base en los datos de entrenamiento.

Evaluación del modelo: debido a que cada modelo da como resultado un sesgo en la construcción del modelo que otorga la solución al problema, resulta importante evaluar cómo de eficiente es el aprendizaje del algoritmo durante su etapa de entrenamiento. Dependiendo del tipo de modelo utilizado, es posible valorar la precisión del modelo mediante una evaluación con los datos de prueba. En algunos casos, se requiere del desarrollo de medidas de rendimiento específicas para la aplicación prevista.

Mejora del modelo: si se necesita un mejor rendimiento, resulta fundamental utilizar estrategias más avanzadas para aumentar el rendimiento del modelo. Algunas veces, puede ser necesario cambiar a un tipo diferente de algoritmo de aprendizaje, con la finalidad de que el nuevo algoritmo pueda realizar la misma tarea de una manera más precisa. A su vez, puede que se requiera complementar los datos de entrenamiento con datos adicionales más representativos del problema abordado, o realizar un trabajo preparatorio adicional, como se indica en el paso 2 de este proceso (véase figura 1.1).


Figura 1.1. Etapas de implementación de un algoritmo de aprendizaje máquina.

Introducción al Machine Learning con MATLAB

Подняться наверх