Читать книгу Smart Grid and Enabling Technologies - Frede Blaabjerg - Страница 67
References
Оглавление1 1 U.S. Energy Information Administration (2019). International Energy Outlook. https://www.eia.gov/outlooks/ieo (accessed 31 January 2021).
2 2 Alshahrani, A., Omer, S., Su, Y. et al. (2019). The technical challenges facing the integration of small‐scale and large‐scale PV systems into the grid: a critical review. Electronics 8 (12): 1–28.
3 3 Sarkar, S., Chakrabarti, U., Bhattacharyya, S., and Chakrabarti, A. (2020). A comprehensive assessment of the need and availability of smart grid technologies in an electricity distribution grid network. Journal of the Institution of Engineers (India): 1–9.
4 4 Mohammed, A., Refaat, S.S., Bayhan, S., and Abu‐Rub, H. (2019). Ac microgrid control and management strategies: evaluation and review. IEEE Power Electronics Magazine 6 (2): 18–31.
5 5 Sayed, A., Magdy, A., Badr, A. and Eldebeiky, S. (2019). Optimal Management of Distribution Networks Regarding Reactive Power Generation. 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt (17–19 December 2019). IEEE.
6 6 Ellabban, O., Abu‐Rub, H., and Blaabjerg, F. (2014). Renewable energy resources: current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 39: 748–764.
7 7 Bascom, E.C.R., Muriel, K.M., Nyambega, M. et al. (2014). Utility's strategic application of short underground transmission cable segments enhances power system. IEEE PES T&D Conference and Exposition, Chicago, IL, USA (14–17 April 2014). IEEE.
8 8 Schavemaker, P. and Van der Sluis, L. (2017). Electrical Power System Essentials. Wiley.
9 9 Prakash, K., Lallu, A., Islam, F.R. and Mamun, K.A. (2016). Review of power system distribution network architecture. 3rd Asia‐Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji (5–6 December 2016). IEEE.
10 10 Bastiao, F., Cruz, P. and Fiteiro, R. (2008). Impact of distributed generation on distribution networks. 5th International Conference on the European Electricity Market, Lisboa, Portugal (29–30 May 2008).
11 11 Blalock, T.J. (2012). In the Berkshires, part 1: William Stanley started something [history]. IEEE Power and Energy Magazine 10 (4): 85–94.
12 12 Veldman, E., Geldtmeijer, D.A.M., Knigge, J.D., and Slootweg, J.G. (2010). Smart grids put into practice: technological and regulatory aspects. Competition and Regulation in Network Industries 11 (3): 287–307.
13 13 Network Development Roadmap Consultation (2018). https://www.nationalgrideso.com/document/113896/download
14 14 Refaat, S.S., Mohamed, A. and Kakosimos, P. (2018). Self‐Healing control strategy; challenges and opportunities for distribution systems in smart grid. 12th International Conference on Compatibility, Power Electronics and Power Engineering, Doha, Qatar (10–12 April 2018). IEEE.
15 15 US Department of Energy (2003). Grid 2030 – A Vision for Electricity's Second 100 Years. https://www.energy.gov/oe/downloads/grid‐2030‐national‐vision‐electricity‐s‐second‐100‐years (accessed 31 January 2021).
16 16 Webb, M. (2008). Smart 2020: enabling the low carbon economy in the information age. The Climate Group. London 1 (1): 1–87. https://www.compromisorse.com/upload/estudios/000/36/smart2020.pdf.
17 17 Hertzog, C. (2009). Smart Grid Dictionary. GreenSpring Marketing LLC.
18 18 Mohamed, A., Refaat, S.S., and Abu‐Rub, H. (2019). A review on big data management and decision‐making in smart grid. Power Electronics and Drives 4 (1): 1–13.
19 19 Grunwald, A. and Orwat, C. (2019). Technology Assessment of Information and Communication Technologies. In: Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human‐Computer Interaction (ed. M. Khosrow‐Pour), 600–611. Hershey, PA: IGI Global.
20 20 Refaat, S.S., Abu‐Rub, H., Trabelsi, M. and Mohamed, A. (2018). Reliability evaluation of smart grid system with large penetration of distributed energy resources. IEEE International Conference on Industrial Technology, Lyon, France (20–22 February 2018). IEEE.
21 21 Eskandari, M., Li, L., Moradi, M.H. et al. (Oct. 2020). Optimal voltage regulator for inverter interfaced distributed generation units part І: control system. IEEE Transactions on Sustainable Energy 11 (4): 2813–2824. https://doi.org/10.1109/TSTE.2020.2977330.
22 22 Eskandari, M., Blaabjerg, F., Li, L. et al. (Oct. 2020). Optimal voltage regulator for inverter interfaced distributed generation units part II: application. IEEE Transactions on Sustainable Energy 11 (4): 2825–2835. https://doi.org/10.1109/TSTE.2020.2977357.
23 23 Parhizi, S., Lotfi, H., Khodaei, A., and Bahramirad, S. (2015). State of the art in research on microgrids: a review. IEEE Access 3: 890–925. https://doi.org/10.1109/ACCESS.2015.2443119.
24 24 Ela, E., Kirby, B., Botterud, A. et al. (2013). Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint. United States https://www.osti.gov/servlets/purl/1080132.
25 25 Das, C.K., Bass, O., Kothapalli, G. et al. (2018). Overview of energy storage systems in distribution networks: placement, sizing, operation, and power quality. Renewable and Sustainable Energy Reviews 91: 1205–1230.
26 26 Vahid‐Ghavidel, M., Javadi, M.S., Gough, M. et al. (2020). Demand response programs in multi‐energy systems: a review. Energies 13 (17): 4332.
27 27 Liu, Y., Yuen, C., Ul Hassan, N. et al. (April 2015). Electricity cost minimization for a microgrid with distributed energy resource under different information availability. IEEE Transactions on Industrial Electronics 62 (4): 2571–2583. https://doi.org/10.1109/TIE.2014.2371780.
28 28 Ekanayake, J.B., Jenkins, N., Liyanage, K. et al. (2012). Smart Grid: Technology and Applications. Wiley.
29 29 Rafique, Z., Khalid, H.M., and Muyeen, S.M. (2020). Communication systems in distributed generation: a bibliographical review and frameworks. IEEE Access 8: 207226–207239. https://doi.org/10.1109/ACCESS.2020.3037196.
30 30 Elyengui, S., Bouhouchi, R. and Ezzedine, T. (2014). The enhancement of communication technologies and networks for smart grid applications. arXiv preprint arXiv:1403.0530, Cornell University.
31 31 Jayashree, L.S. and Selvakumar, G. (2020). The internet of things: connectivity standards. In: Getting Started with Enterprise Internet of Things: Design Approaches and Software Architecture Models, 1–30. Cham: Springer.
32 32 van Nee, R. and Prasad, R. (2000). OFDM for Wireless Multimedia Communications. Artech House, Inc.
33 33 Nuaymi, L. (2007). WiMAX Technology for Broadband Wireless Access. Chichester: Wiley.
34 34 Baimel, D., Tapuchi, S., and Baimel, N. (2016). Smart grid communication technologies. Journal of Power and Energy Engineering 04 (08): 1–8.
35 35 Khan, I. (2019). Energy‐saving behaviour as a demand‐side management strategy in the developing world: the case of Bangladesh. International Journal of Energy and Environmental Engineering 10 (4): 493–510.
36 36 US Department of energy (2018). Smart Grid System Report. 2018 Report to Congress. https://www.energy.gov/sites/prod/files/2019/02/f59/Smart%20Grid%20System%20Report%20November%202018_1.pdf (accessed 1 February 2021).
37 37 Kelly, M. and Elberg, R. (2017). Customer Management and Experience Technologies. Global Analysis and Market Forecasts, Navigant research.
38 38 Rashed Mohassel, R., Fung, A., Mohammadi, F., and Raahemifar, K. (2014). A survey on advanced metering infrastructure. International Journal of Electrical Power & Energy Systems 63: 473–484.
39 39 Henderson, M.I., Novosel, D., and Crow, M.L. (2017). Electric power grid modernization trends, challenges, and opportunities. IEEE Power and Energy: 1–17. https://www.ieee.org/content/dam/ieee‐org/ieee/web/org/about/corporate/ieee‐industry‐advisory‐board/electric‐power‐grid‐modernization.pdf.
40 40 Wenderoth, F., Drayer, E., Schmoll, R. et al. (2019). Architectural and functional classification of smart grid solutions. Energy Informatics 2 (1), article number: 33: 1–13.
41 41 Al‐Badi, A.H., Ahshan, R., Hosseinzadeh, N. et al. (2020). Survey of smart grid concepts and technological demonstrations worldwide emphasizing on the Oman perspective. Applied System Innovation 3 (1): 1–27.
42 42 Xinghuo, Y., Cecati, C., Dillon, T., and Godoy Simoes, M. (2011). The new frontier of smart grids. IEEE Industrial Electronics Magazine 5 (3): 49–63.
43 43 Cunjiang, Y., Huaxun, Z., and Lei, Z. (2012). Architecture design for smart grid. Energy Procedia 17: 1524–1528.
44 44 Loschi, H.J., Leon, J., Iano, Y. et al. (2015). Energy efficiency in smart grid: a prospective study on energy management systems. Smart Grid and Renewable Energy 6 (08): 250.
45 45 Veldman, E., Gibescu, M., Postma, A. et al. (2009). Unlocking the hidden potential of electricity distribution grids. 20th International Conference and Exhibition on Electricity Distribution, Prague, Czech Republic (8–11 June 2009).
46 46 Siano, P. (2014). Demand response and smart grids – a survey. Renewable and Sustainable Energy Reviews 30: 461–478.
47 47 Jain, A. and Mishra, R. (2016). Changes & challenges in smart grid towards smarter grid. 2016 International Conference on Electrical Power and Energy Systems, Bhopal, India (14–16 December 2016). IEEE.
48 48 Electricity Advisory Committee (2008). Smart Grid: Enabler of the New Energy Economy. A Report by the Electricity Advisory Committee. https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/final‐smart‐grid‐report.pdf (accessed 1 February 2021).
49 49 European Technology Platform Smart Grids (2008). Strategic Deployment Document for European's Electricity Networks of the Future. Draft for 3rd General Assembly, Belgium. http://kigeit.org.pl/FTP/PRCIP/Literatura/020_SmartGrids_ETP_SDD_FINAL_APRIL2010.pdf (accessed 1 February 2021).
50 50 Platt, G. (2007). The Decentralised Control of Electricity Networks – Intelligent and Self‐Healing Systems. Grid Interop 2007 Forum Proceedings. Richland, WA.
51 51 DOE (2008). Metrics for Measuring Progress toward Implementation of the Smart Grid. Washington, DC: DOE, Office of Electricity Delivery and Energy Reliability, Washington, DC.
52 52 Bagdadee, A.H. and Zhang, L. (2019). A review of the smart grid concept for electrical power system. International Journal of Energy Optimization and Engineering (IJEOE) 8 (4): 105–126.
53 53 Md, R.H., Amanullah, M.T.O., and Shawkat Ali, A.B.M. (2013). Smart grid. In: Smart Grids (ed. A.B.M.S. Ali), 23–44. London: Springer https://www.springer.com/gp/book/9781447152095.
54 54 Liu, X., Chen, B., Chen, C., and Dong, J. (2019). Electric power grid resilience with interdependencies between power and communication networks–a review. IET Smart Grid 3 (2): 182–193.
55 55 Madrigal, M., Uluski, R., and Gaba, K.M. (2017). Practical Guidance for Defining a Smart Grid Modernization Strategy: The Case of Distribution (Revised Edition). The World Bank.
56 56 International Electrotechnical Commission (2010). IEC smart grid standardization roadmap. SMB Smart Grid Strategic Group.
57 57 ETIP, SNET (2016). Final 10‐year ETIP SNET R&I roadmap covering 2017–26. Brussels: European Technology & Innovation Platforms Smart Networks for Energy. https://www.etip‐snet.eu/wp‐content/uploads/2017/03/Final_10_Year_ETIP‐SNET_RI_Roadmap.pdf (accessed 1 February 2021).
58 58 Rebec, G., Moisan, F. and Gioria, M. (2009). Road‐map for smart grids and electricity systems integrating renewable energy sources. https://inis.iaea.org/search/search.aspx?orig_q=RN:45087571 (accessed 1 February 2021).
59 59 Scarsella, B. (2009). Flexibility Roadmap Future Smart, A smart grid for all: Our transition to Distribution System Operator. UK Power Networks. https://innovation.ukpowernetworks.co.uk/wp‐content/uploads/2019/07/futuresmart‐flexibility‐roadmap.pdf (accessed 1 February 2021).
60 60 Farhangi, H. (2014). A road map to integration. IEEE Power and Energy Magazine.
61 61 The U.S. Department of Energy by Litos Strategic Communication (2004). The SMART GRID: an introduction. https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages%281%29.pdf (accessed 1 February 2021).
62 62 SEFI, UNEP (2010). Global Trends in Sustainable Energy Investment, Analysis of Trends and Issues in the Financing of Renewable Energy and energy effeciency. https://energy‐base.org/app/uploads/2020/03/13.SEFI‐Global‐Trends‐in‐Sustainable‐Energy‐Investment‐2010.pdf (accessed 1 February 2021).
63 63 Naimoli, S., and Ladislaw, S. (2020). Climate Solutions Series. Decarbonizing the Electric Power Sector, Center for Strategic & International Studies (12 May), p. 1–7.
64 64 Hirsh, R.F. and Koomey, J.G. (2015). Electricity consumption and economic growth: a new relationship with significant consequences? The Electricity Journal 28 (9): 72–84.
65 65 Ansari, N., and Lo, C‐H. (2017). Decentralized controls and communications for autonomous distribution networks in smart grid. US Patent 9, 804,623, filed 10 October 2012 and issued October 31 2017.
66 66 Cárdenas, A.A. and Safavi‐Naini, R. (2012). Security and privacy in the smart grid. In: Handbook on Securing Cyber‐Physical Critical Infrastructure (eds. S.K. Das, K. Kant and N. Zhang), 637–654. Elsevier.
67 67 Saleem, Y., Crespi, N., Rehmani, M.H., and Copeland, R. (2019). Internet of things‐aided smart grid: technologies, architectures, applications, prototypes, and future research directions. IEEE Access 7: 62962–63003. https://doi.org/10.1109/ACCESS.2019.2913984.
68 68 Astarios, B., Kaakeh, A., Lombardi, M. and Scalise, J. (2017). The future of electricity: New technologies transforming the grid edge. World Economic Forum. http://www3.weforum.org/docs/WEF_Future_of_Electricity_2017.pdf (accessed 1 February 2021).
69 69 World Bank (2011). Applications of Advanced Metering Infrastructure in Electricity Distribution. https://openknowledge.worldbank.org/handle/10986/12948 (accessed 1 Feburyary 2021).
70 70 Mohassel, R.R., Fung, A., Mohammadi, F., and Raahemifar, K. (2014). A survey on advanced metering infrastructure. International Journal of Electrical Power & Energy Systems 63: 473–484.
71 71 Glenn, C., Sterbentz, D., and Wright, A. (2016). Cyber Threat and Vulnerability Analysis of the U.S. Electric Sector. https://www.osti.gov/servlets/purl/1337873. (accessed 1 February 2021).
72 72 Wilson, E., Stephens, J., and Peterson, T. (2015). Smart Grid (R)Evolution: Electric Power Struggles. Cambridge: Cambridge University Press.
73 73 Jiang, T., Yu, L., and Cao, Y. (2015). Energy Management of Internet Data Centers in Smart Grid. Springer Berlin Heidelberg.
74 74 Farmanbar, M., Parham, K., Arild, Ø., and Rong, C. (2019). A widespread review of smart grids towards smart cities. Energies 12 (23): 1–18.
75 75 SAIC Smart Grid Team (2006). San Diego Smart Grid Study Final Report. https://www.sandiego.edu/law/documents/centers/epic/061017_SDSGStudyES_FINAL.pdf (accessed 1 February 2021).
76 76 Back, A‐ K., Evens, C., Hukki, K. et al. (2011). Consumer acceptability and adoption of Smart Grid, SGEM Research Report Helsinki. http://sgemfinalreport.fi/files/SGEM%20Research%20Report%20D1.2%202011‐04‐04.pdf (accessed 1 February 2021).
77 77 Liu, J., Xiao, Y. and Gao, J. (2011). Accountability in smart grids. Consumer Communications and Networking Conference, Las Vegas, NV, USA (9–12 January 2011). IEEE.
78 78 Geraci, A. (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY: Institute of Electrical and Electronics Engineers Inc.
79 79 Authorship Team (2011). A Smart Grid Policy Center White Paper. https://www.smartgrid.gov/files/documents/Paths_Smart_Grid_Interoperability.pdf (accessed 1 Februry 2021).
80 80 The GridWise Architecture Council (2008). GridWise Interoperability Context‐Setting Framework. https://www.gridwiseac.org/pdfs/interopframework_v1_1.pdf (accessed 1 February 2021).
81 81 FitzPatrick, G.J. and Wollman, D.A. (2010). NIST interoperability framework and action plans. IEEE PES General Meeting, Providence, RI, USA (25–29 July 2010). IEEE.
82 82 Greer, C., Wollman, D.A., Prochaska, D.E. et al. NIST framework and roadmap for smart grid interoperability standards, release 3.0. No. Special Publication (NIST SP)‐1108r3.
83 83 Strabbing, W. (2017). Smart meter interoperability and interchangeability in Europe. https://esmig.eu/news/smart‐meter‐interoperability‐and.
84 84 Alves, G., Marques, D., Silva, I. et al. (2019). A methodology for dependability evaluation of smart grids. Energies 12 (9): 1817.
85 85 Lestas, I., Kasis, A., Monshizadeh, N., and Devane, E. (2017). Stability and optimality of distributed secondary frequency control schemes in power networks. IEEE Transactions on Smart Grid 10 (2): 1747–1761. https://doi.org/10.1109/TSG.2017.2777146.
86 86 Altera Corporation (2013). Overcoming Smart Grid Equipment Design Challenges with FPGAs. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp‐01191‐smart‐grid‐design.pdf (accessed 1 February 2021).
87 87 Jokar, P., Arianpoo, N., and Leung, V.C.M. (2016). A survey on security issues in smart grids. Security and Communication Networks 9 (3): 262–273.
88 88 Mustafa, M.A. (2015). Smart grid security: protecting users'privacy in smart grid applications. Doctoral Thesis. University of Manchester. https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk‐ac‐man‐scw:276339&datastreamId=FULL‐TEXT.PDF (accessed 1 February 2021).
89 89 Hossain, M.R., Oo, A.M.T. and Shawkat Ali, A.B.M. (2010). Evolution of smart grid and some pertinent issues. 20th Australasian Universities Power Engineering Conference, Christchurch, New Zealand (5–8 December 2010). IEEE.
90 90 Electric Power Research Institute. (2011). Estimating the Costs and Benefits of the Smart Grid: A Preliminary Estimate of the Investment Requirements and the Resultant Benefits of a Fully Functioning Smart Grid. https://smartgrid.gov/files/documents/Estimating_Costs_Benefits_Smart_Grid_Preliminary_Estimate_In_201103.pdf (accessed 28 January 2013).
91 91 Abu‐Rub, H., Refaat, S.S., Bayhan, S. et al. (2019). Optimizing KAHRAMAA’s Smart Grid Capabilities and Setting its Future Roadmap. TASK FORCE ON Qatar’s Smart Grid Road Map, (not published).