Читать книгу Popular Scientific Recreations in Natural Philosphy, Astronomy, Geology, Chemistry, etc., etc., etc - Gaston Tissandier - Страница 5
CHAPTER II.
ОглавлениеSCIENCE IN THE OPEN AIR—APHIDES—EVAPORATION BY LEAVES—AN AQUARIUM—THE CATALEPTIC FOWL—NEEDLE POINTS AND THORNS—MICROSCOPIC AQUARIUM—CAPE GRISNEZ—CRYSTALS—ICE ON THE GAS LAMPS.
Fig. 1.—Ants engaged in extracting aphides from a rose-tree (highly magnified)
Some years ago we were staying in Normandy, not far from the town of C——, enjoying, in the midst of most cordial hospitality, the peacefulness of country life; and my kind hosts, with me, took great pleasure in having what we called “a course of science in the open air.” The recollections of that time are some of the pleasantest in the whole course of my life, because all our leisure was intelligently occupied. Each of us set himself to provide the subject of some curious observation or instructive experiment; one made a collection of insects, another studied botany. In the daytime we might have been seen examining, under a magnifying glass, the branch of a rose-tree, from which the ants were endeavouring to extract the aphides1 (fig. 1). At night we admired through the telescope the stars and planets that were visible; or if the sky was not clear, we examined under a strong magnifier grains of pollen from flowers, or the infusoria in a drop of stagnant water. Frequently some very insignificant object became the occasion for some scientific discussion, which terminated with an experimental verification.
Fig. 2.—Experiment showing evaporation
of water by leaves.
I recollect that one day one of us remarked that after a week of dry weather a stream of water had nearly dried up, although sheltered by thick trees, which necessarily impeded the calorific action of the sun; and he expressed surprise at the rapid evaporation. An agriculturist among the company, however, drew his attention to the fact that the roots of the trees were buried in the course of the stream, and that, far from preventing the evaporation of the water, the leaves had contributed to accelerate it. As the first speaker was not convinced, the agriculturist, on our return to the house, prepared an experiment represented in fig. 2. He placed the branch of a tree covered with foliage in a U-shaped tube, the two branches of unequal diameter, and filled with water. He placed the vegetable stem in the water, and secured it to the tube by means of a cork covered with a piece of india-rubber, and tied tightly to make it hermetically closed.
At the commencement of the experiment the water was level with A in the larger branch of the tube, and level with B in the smaller, rising by capillarity to a higher point in the more slender of the two. The evaporation of the water caused by the leaves was so active that in a very short time we beheld the water sink to the points C and C′.
Fig. 3.—Aquarium formed by means of a melon glass.
Thus did the excellent method of seeking the cause of phenomena by experiments often lead us to interesting results. We had among us many children and young people who had reached the age of ardent curiosity. We took pleasure in pointing out to them the means of studying natural science; and we were not long before feeling convinced that our lessons out in the fields had much greater success than those given between the four walls of a class-room. Insects were collected, and preserved by being carefully placed in a small bottle, into which was let fall a drop of sulphuret of carbon;2 the insect was immediately asphyxiated, and we thus avoided the cruelty of passing a pin through a living body. Having chased butterflies and insects, we next desired to study the aquatic creatures which swarmed in the pools of the neighbourhood. For this purpose I constructed a fishing-net fitted to an iron ring, and firmly secured to a wooden handle. When this was plunged under the water and drawn quickly out again, it came back full of slime. In the midst of this muddy substance one generally succeeded in finding the hydrophilus, tadpoles, coleoptera, many curious kinds of caddis-worms, tritons, and sometimes frogs, completely astounded by the rapidity of their capture. All these creatures were transported in a bottle to the house, and I then constructed, at small expense, a glass aquarium, by means of the bell of a melon-glass turned upside down, thus forming a transparent receptacle of considerable size. Four wooden stakes were then fixed in the ground, and a plank with a circular hole nailed on the top, in which the glass bell was placed. I next scattered some large pebbles and shells at the bottom of the vase to form a stony bed, poured in some water, placed a few reeds and water plants among the pebbles, and then threw a handful of water lentils on the surface; thus a comfortable home was contrived for all the captured animals.3 The aquarium, when placed under the shade of a fine tree in a rustic spot abounding with field flowers, became a favourite rendezvous, and we often took pleasure in watching the antics of the little inmates (fig. 3). Sometimes we beheld very sanguinary scenes; the voracious hydrophilus would seize a poor defenceless tadpole, and rend him in pieces for a meal without any compunction. The more robust tritons defended themselves better, but sometimes they also succumbed in the struggle.
Fig. 4.—Cage for preserving living insects.
Fig. 5.—Small aquarium, with frogs’ ladder.
The success of the aquarium was so complete that one of us resolved to continue this museum in miniature, and one day provided himself with an insects palace, which nearly made us forget the tadpoles and tritons. It was a charming little cage, having the form of a house, covered with a roof; wires placed at equal distances forming the sides. In it was a large cricket beside a leaf of lettuce, which served as his food (fig. 4). The little creature moved up and down his prison, which was suspended from the branch of a tree, and when one approached him very closely gave vent to his lively chirps.
Fig. 6.—Frog lying in wait for a fly.
The menagerie was soon further augmented by a hitherto unthought-of object; namely, a frogs’ ladder. It was made with much skill. A large bottle served for the base of the structure. The ladder which was fixed in it was composed of the twigs of very small branches, recently cut from a tree, and undivested of their bark, which gave to the little edifice a more picturesque and rustic appearance. The pieces of wood, cleverly fixed into two posts, conducted the green frogs (tree-frogs) on to a platform, whence they ascended the steps of a genuine ladder. There they could disport themselves at pleasure, or climb up further to a branch of birch-tree placed upright in the centre of the bottle (fig. 5). A net with fine meshes prevented the little animals from escaping. We gave the tree-frogs flies for their food, and sometimes they caught them with remarkable dexterity. I have often seen a frog when at liberty watching a fly, on which it pounces as a cat does on a bird (fig. 6). The observations that we made on the animals of our menagerie led us to undertake others of a very different nature; I recollect particularly a case of catalepsy produced in a cock. I will describe this remarkable experiment, certainly one of the most curious we ever performed.
Fig. 7.—Experiment of the cataleptic cock.
We place a cock on a table of dark colour, rest its beak on the surface, where it is firmly held, and with a piece of chalk slowly draw a white line in continuation from the beak, as shown in our engraving. If the crest is thick, it is necessary to draw it back, so that the animal may follow with his eyes the tracing of the line. When the line has reached a length of about two feet the cock has become cataleptic. He is absolutely motionless, his eyes are fixed, and he will remain from thirty to sixty seconds in the same posture in which he had at first only been held by force. His head remains resting on the table in the position shown in fig. 7. This experiment, which we have successfully performed on different animals, can also be accomplished by drawing a straight line with a piece of chalk on a slate. M. Azam declares that the same result is also produced by drawing a black line on a table of white wood. According to M. Balbiani, German students had formerly a great predilection for this experiment, which they always performed with marked success. Hens do not, when operated on, fall into a cataleptic condition so easily as cocks; but they may often be rendered motionless by holding their heads fixed in the same position for several minutes. The facts we have just cited come properly under the little studied phenomena, designated by M. Braid in 1843 by the title of Hypnotism. MM. Littré and Ch. Robin have given a description of the hypnotic condition in their Dictionnaire de Médecine.
Fig. 8.—Ordinary pin and needle, seen through a microscope (magnified 500 diameters).
Fig. 9.—Thorn of a rose, and wasp’s sting through a microscope (magnified 500 diameters).
If any shining object, such as a lancet, or a disc of silver-paper gummed to a plate, is placed at about the distance of a foot from the eyes of a person, slightly above the head, and the patient regards this object fixedly, and without interruption for twenty or thirty minutes, he will become gradually motionless, and in a great number of cases will fall into a condition of torpor and genuine sleep. Dr. Braid affirms that under such circumstances he has been able to perform surgical operations, without the patient having any consciousness of pain. Later also, M. Azam has proved the complete insensibility to pricking on the part of individuals whom he has rendered cataleptic by the fixing of a brilliant object. The experiment of the cataleptic cock was first described under the name of Experimentum Mirabile, by P. Kircher, in his Ars Magna, published at Rome in 1646. It evidently belongs to the class of experiments which were performed at the Salpêtrière asylum at Paris, by M. Charcot, on patients suffering from special disorders. It must now be evident to our readers that our scientific occupations were sufficiently varied, and that we easily found around us many objects of study. When the weather was wet and cloudy we remained indoors, and devoted ourselves to microscopical examinations. Everything that came under our hands, insects, vegetables, etc., were worthy of observation. One day, while engaged over a microscopical preparation, I was making use of one of those steel points generally employed in such purposes, when happening to pass it accidentally beneath the microscope, I was astonished to see how rough and uneven it appeared when highly magnified. The idea then occurred to me to have recourse to something still more pointed, and I was thus led to make comparisons between the different objects represented in figs. 8 and 9. It will here be seen how very coarse is the product of our industry when compared with the product of Nature. No. 1 of fig. 8 represents the point of a pin that has already been used, magnified 500 diameters. The point is evidently slightly blunted and flattened. The malleable metal has yielded a little under the pressure necessary to make it pass through a material. No. 2 is a little more pointed; it is a needle. This, too, will be seen to be defective when regarded by the aid of the microscope. On the other hand, what fineness and delicacy do the rose thorn and wasp’s sting present when examined under the same magnifier! (See the two points in fig. 9.)
An examination of this exact drawing has led me to make a calculation which leads to rather curious results: at a half millimetre from the point, the diameters of the four objects represented are in thousandths of a millimetre respectively, 3·4; 2·2; 1·1; 0·38. The corresponding sections in millionths of a square millimetre are: 907·92; 380·13; 95·03; 11·34; or, in round numbers, 908; 380; 95; 11.
If one bears in mind, which is much below the truth, that the pressure exercised on the point must be proportional to the section, and admitting that a pressure of 11 centigrams suffices to thrust in the sting of a wasp half a millimetre, it will require more than 9 grams of pressure to thrust in a needle to the same extent. In fact, this latter figure is much too small, for we have not taken into account the advantage resulting from the elongated shape of the rose thorn, which renders it more favourable for penetration than a needle through a drop of tallow.
It would be easy to extend observations of this kind to a number of other objects, and the remarks I have just made on natural and artificial points will apply incontestably to textures for example. There is no doubt that the thread of a spider’s web would far surpass the thread of the finest lace, and that art will always find itself completely distanced by nature.
We amused ourselves frequently by examining the infusoria which are so easily procured by taking from some stagnant water the mucilage adhering to the vegetation on the banks, or attached to the lower part of water lentils. In this way we easily captured infusoria, which, when placed under a strong magnifier, presented the most remarkable spectacle that one can imagine. They are animalcules, having the form of transparent tulips attached to a long stem. They form bunches which expand and lengthen; then, suddenly, they are seen to contract with such considerable rapidity that the eye can scarcely follow the movement, and all the stems and flower-bells are folded up into the form of a ball. Then, in another moment, the stems lengthen, and the tulip-bells open once more. One can easily encourage the production of infusoria by constructing a small microscopic aquarium, in which one arranges the centre in a manner favourable to the development of the lowest organisms. It suffices to put a few leaves (a piece of parsley answers the purpose perfectly)4 in a small vase containing water (fig. 10), over which a glass cover is placed, and it is then exposed to the rays of the sun. In two or three days’ time, a drop of this water seen under the microscope will exhibit infusoria. After a certain time, too, the different species will begin to show themselves. Microscopical observations can be made on a number of different objects. Expose to the air some flour moistened by water, and before long a mouldiness will form on it; it is the penicillium glaucum, and when examined under a magnifier of 200 to 300 diameters, cells are distinguishable, branching out from an organism remarkable for its simplicity. We often amused ourselves by examining, almost at hazard, everything that came within our reach, and sometimes we were led to make very instructive investigations. When the sky was clear, and the weather favourable to walking, we encouraged our young people to run about in the fields and chase butterflies. The capture of butterflies is accomplished, as every one knows, by means of a gauze net, with which we provided the children, and the operation of chasing afforded them some very salutary exercise. It sometimes happens that butterflies abound in such numbers, that it is comparatively easy to capture them. During the month of June 1879, a large part of Western Europe was thronged with swarms of Vanessa algina butterflies, in such numbers that their appearance was regarded as an important event, and attracted the lively attention of all entomologists (fig. 11). This passage of butterflies provided the occasion for many interesting studies on the part of naturalists.
Fig. 10.—Arrangement of a microscopic aquarium for examining infusoria.
Fig. 11.—Flight of butterflies seen near Berne, June 15th, 1879.
Fig. 12.—Group of rock crystal.
We cannot point out too strongly to our readers that the essential condition for the student of natural science, is the possession of that sacred fire which imparts the energy and perseverance necessary for acquiring and enlarging collections. It is also necessary that the investigator should furnish himself with certain indispensable tools. For collecting plants, the botanist should be armed with a pickaxe set in a thoroughly strong handle, a trowel, of which there is a variety of shapes, and a knife with a sharp blade. A botanical case must also be included, for carrying the plants. The geologist, or mineralogist, needs no more elaborate instruments; a hammer, a chisel, and a pickaxe with a sharp point for breaking the rocks, and a bag for carrying the specimens, will complete his outfit. We amused ourselves by having these instruments made by the blacksmith, sometimes even by manufacturing them ourselves; they were simple, but solid, and admirably adapted to the requirements of research. Often we directed our walks to the seashore, where we liked to collect shells on the sandy beach, or fossils among the cliffs and rocks. I recollect, in a walk I had taken some years previously along the foot of the cliffs of Cape Blanc-Nez, near Calais, having found an impression of an ammonite of remarkable size, which has often excited the admiration of amateurs; this ammonite measured no less than twelve inches in diameter. The rocks of Cape Grisnez, not far from Boulogne, also afford the geologian the opportunity of a number of curious investigations. In the Ardennes and the Alps I have frequently procured some fine mineral specimens; in the first locality crystallized pyrites, in the second, fine fragments of rock crystal (fig. 12). I did not fail to recount these successful expeditions to the young people who accompanied me, and their ardour was thereby inflamed by the hope that they also should find something valuable. It often happened when the sun was powerful, and the air extremely calm, that my young companions and I remarked some very beautiful effects of mirage on the beach, due to the heating of the lower strata of the atmosphere. The trees and houses appeared to be raised above a sheet of silver, in which their reflections were visible as in a sheet of tranquil water. It can hardly be believed how frequently the atmosphere affords interesting spectacles which pass unperceived before the eyes of those who know not how to observe. I recollect having once beheld at Jersey a magnificent phenomenon of this nature, on the 24th June, 1877, at eight o’clock in the evening: it was a column of light which rose above the sinking sun like a sheaf of fire. I was walking on the St. Helier pier, where there were also many promenaders, but there were not more than two or three who regarded with me this mighty spectacle. Columns and crosses of light are much more frequent than is commonly supposed, but they often pass unperceived before indifferent spectators. We will describe an example of this phenomenon observed at Havre on the 7th May, 1877. The sun formed the centre of the cross, which was of a yellow, golden colour. This cross had four branches. The upper branch was much more brilliant than the others; its height was about 15°. The lower branch was smaller, as seen in the sketch on page 2, taken from nature by Monsieur Albert Tissandier. The two horizontal branches were at times scarcely visible, and merged in a streak of reddish-yellow colour, which covered a large part of the horizon. A mass of cloud, which the setting sun tinged with a deep violet colour, formed the foreground of the picture. The atmosphere over the sea was very foggy. The phenomenon did not last more than a quarter of an hour, but the conclusion of the spectacle was signalized by an interesting circumstance. The two horizontal branches, and the lower branch of the luminous cross, completely disappeared, whilst the upper branch remained alone for some minutes longer. It had now the appearance of a vertical column rising from the sun, like that which Cassini studied on the 21st May, 1672, and that which M. Renon5 and M. A. Guillemin observed on the 12th July, 1876.6 Vertical columns, which, it is well known, are extremely rare phenomena, may therefore indicate the existence of a luminous cross, which certain atmospheric conditions have rendered but partially visible.
How often one sees along the roads little whirlwinds of dust raised by the wind accomplishing a rotatory movement, thus producing the imitation of a waterspout! How often halos encompass with a circle of fire the sun or the stars! How often we see the rainbow develop its iridescent beauties in the midst of a body of air traversed by bright raindrops! And there is not one of these great natural manifestations which may not give rise to instructive observations, and become the object of study and research. Thus, in walks and travels alike, the study of Science may always be exercised; and this method of study and instruction in the open air contributes both to health of body and of mind. As we consider the spectacles which Nature spreads before us—from the insect crawling on the blade of grass, to the celestial bodies moving in the dome of the heavens—we feel a vivifying and salutary influence awaken in the mind. The habit of observation, too, may be everywhere exercised—even in towns, where Nature still asserts herself; as, for example, in displays of meteorological phenomena. We will give an example of such.
Fig. 13.—Icicles on gas lamp.
The extraordinary abundance of snow which fell in Paris for more than ten consecutive hours, commencing on the afternoon of Wednesday, January 22nd, 1880, will always be looked upon as memorable among the meteorological events of the city of Paris. It was stated that in the centre of Paris, the thickness of the snow that had fallen at different times exceeded fourteen inches. The snow had been preceded by a fall of small transparent
icicles, of rather more than a millimetre in diameter, some having crystalline facets. They formed on the surface of the ground a very slippery glazed frost. On the evening of the 22nd January, flakes of snow began to hover in the atmosphere like voluminous masses of wool. The greater part of the gas-lamps were ornamented by frozen stalactites, which continually attracted the attention of passers-by. The formation of these stalactites, of which we give a specimen (fig. 13), is easy of explanation. The snow falling on the glass of the lamp became heated by the flame of gas, melted, and trickled down, freezing anew into the shape of a stalactite below the lamp, at a temperature of 0° centigrade. Not only can meteorology be studied in towns, but certain other branches of natural science—entomology, for example. We will quote what a young student in science, M. A. Dubois, says on this very subject: “Coleoptera,” he declares, “are to be met with everywhere, and I think it may be useful to notice this fact, supporting it by examples. I desire to prove that there are in the midst of our large towns spots that remain unexplored, where some fine captures are to be made. Let us visit, at certain times, the approaches to the quays, even at low tide, and we shall be surprised to find there species which we have searched for far and near.” This opinion is confirmed by the enumeration of several interesting captures.
Was not the great Bacon right when he said, “For the keen observer, nothing in Nature is mute”?
The cliffs of Cape Grisnez.