Читать книгу Popular Scientific Recreations in Natural Philosphy, Astronomy, Geology, Chemistry, etc., etc., etc - Gaston Tissandier - Страница 8
CHAPTER V.
ОглавлениеGASES AND LIQUIDS—PRESSURE OF THE AIR—EXPERIMENTS.
We have more than once referred to the pressure of the air which exerts a great influence upon bodies in motion, but a few experiments will make this more obvious, and clearly demonstrate the fact. We have also told you some of the properties of Solids, such as Weight, Inertia, Friction, and Resistance, or Strength. Solids also, as we have seen, occupy space, and cannot be readily compressed, nor bent to other shapes. Now the subject of the Pressure of the Air leads us to the other forms of Matter; namely, Gases and Liquids, which will be found very interesting to study.
Fig. 38.—Blowing an egg from one glass to another.
The force of air can very soon be shown as acting with considerable pressure upon an egg in a glass. By blowing in a claret glass containing a hard-boiled egg, it is possible to cause the egg to jump out of the glass; and with practice and strength of lungs it is not impossible to make it pass from one glass to another, as per illustration (fig. 38).
The force of heated air ascending can also be ascertained by cutting up a card into a spiral, and holding it above the flame of a lamp (fig. 39). The spiral, if lightly poised, will turn round rapidly.
Now let us turn to a few experiments with the air, which is composed in two gases, Oxygen and Nitrogen, of which we shall hear more when we come to Chemistry.
Fig. 39.—Movement of heated air.
Fig. 40.—Pressure of the air.
It is not intended here to prosecute researches, but rather to sketch a programme for instruction, based on amusing experiments in Physics, performed without apparatus. The greater part of these experiments are probably well known, and we desire to say that we merely claim to have collected and arranged them for our descriptions. We must also add that we have performed and verified these experiments; the reader, therefore, can attempt them with every certainty of success. We will suppose that we are addressing a young auditory, and commence our course of Physics with some facts relating to the pressure of air. A wine glass, a plate, and water, will serve for our first experiments. Pour some water on the plate, light a piece of paper resting on a cork, and cover the flame with the glass which I turn upside down (fig. 40). What follows?—The water rises in the glass. Why?—Because the burning of the paper having absorbed a part of the oxygen, and the volume of confined gas being diminished, the pressure of the outer air has driven back the fluid. I next fill a goblet with water up to the brim, and cover it with a sheet of paper which touches both the edge of the glass and the surface of the water. I turn the glass upside down, and the sheet of paper prevents the water running out, because it is held in place by atmospheric pressure (fig. 41). It sometimes happens that this experiment does not succeed till after a few attempts on the part of the operator; thus it is prudent to turn the glass over a basin, so that, in case of failure, the water is not spilt. Having obtained a vase and a bottle, both quite full of water, take the bottle, holding it round the neck so that the thumb can be used as a stopper, then turn it upside down, and pass the neck into the water in the vase. Remove your thumb, or stopper, keeping the bottle in a vertical position, and you will see that the water it contains does not escape, but remains in suspension. It is atmospheric pressure which produces this phenomenon. If, instead of water, we put milk in the bottle, or some other fluid denser than water, we shall see that the milk also remains suspended in the bottle, only there is a movement of the fluid in the neck of the bottle, and on careful examination we perceive very plainly that the milk descends to the bottom of the vase, and the water rises into the bottle. Here, again, it is atmospheric pressure which maintains the fluid in the bottle, but the milk descends, because fluids are superposed according to their order of density, and the densest liquid falls to the bottom.
This can be verified by means of the phial of the four elements, which is a plain, long, and narrow bottle, containing equal volumes of metallic mercury, salt water, alcohol, and oil. These four liquids will lie one on the top of the other without ever mixing, even if shaken.
Another experiment as to the pressure of the air may be made (fig. 42). Take a penny and press it against some oaken bookcase or press, rub the coin against the wood for a few seconds, then press it, and withdraw the fingers. The coin will continue to adhere to the wood. The reason of this is, because by the rubbing and the pressure you have dispersed the film of air which was between the penny and the wood, and under those conditions the pressure of the atmospheric air was sufficient to keep the penny in its place.
Fig. 41.—Pressure of the air.
Or, again, let us now add a water-bottle and a hard-boiled egg to our appliances; we will make use of the air-pump, and easily perform another experiment. I light a piece of paper, and let it burn, plunging it into a water-bottle full of air. When the paper has been burning a few seconds I close the opening of the water-bottle by means of a hard-boiled egg, which I have previously divested of its shell, so that it forms a hermetic stopper. The burning of the paper has now caused a vacuum of air in the bottle, and the egg is gradually thrust in by the atmospheric pressure outside. Fig. 43 exhibits it slowly lengthening and stretching out as it passes through the aperture; then it is suddenly thrust completely into the bottle with a little explosive sound, like that produced by striking a paper bag expanded with air. This is atmospheric pressure demonstrated in the clearest manner, and at little cost.
Fig. 42.—Coin adhering by pressure of air.
If it is desired to pursue a little further the experiments relating to atmospheric pressure, it will be easy enough to add to the before-mentioned appliances a closed glass-tube and some mercury, and one will then have the necessary elements for performing Torricelli’s and Pascal’s experiments, and explaining the theory of the barometer (page 52).
An amusing toy, well-known to schoolboys, called the “sucker,” may also be made the object of many dissertations on the vacuum and the pressure of air. It is composed of a round piece of soft leather, to the centre of which is attached a small cord. This leather is placed on the ground and pressed under foot, and when the cord is pulled it forms a cupping-glass, and is only separated with difficulty from the pavement.
Atmospheric air, in common with other gases, has a tendency to fill any space into which it may enter. The mutual attraction of particles of air is nil; on the contrary, they appear to have a tendency to fly away from each other; this property is called “repulsion.” Air also possesses an expansive property—a tendency to press against all the sides of any vessel in which it may be enclosed. Of course the larger the vessel containing a given quantity of air, the less actual pressure it will exert on the sides of the vessel. The elasticity of air therefore decreases with increasing expansion, but it gains in elasticity or force when compressed.
There is a law in Physics which expresses the relation between expansion and elasticity of gases, which may be said to be as follows:—
The elasticity (of a gas) is in inverse ratio to the space it occupies, and therefore by compressing air into a small space we can obtain a great force, as in the air-gun and the pop-gun of our youthful days.
Fig. 43.—Hard boiled egg, divested of its shell, passing through the neck of a glass bottle, under the influence of atmospheric pressure.
In the cut below we can illustrate the principle of the pop-gun. The chamber full of air is closed by a cork and by an air-tight piston (S) at p and p. When the piston is pushed into the chamber the air is compressed between it and the stopper, which at length flies out forcibly with a loud report
Fig. 44.—The principle of the pop-gun.
We have said that the tendency of air particles is to fly away from each other, and were it not for the earth’s attraction the air might be dispersed. The height of the atmosphere has been variously estimated from a height of 45 miles to 212 miles in an attenuated form; but perhaps 100 miles high would be a fair estimate of the height to which our atmosphere extends.
Fig. 45.—Weighing the air.
The pressure of such an enormous body of gas is very great. It has been estimated that this pressure on the average human body amounts to fourteen tons, but being balanced by elastic fluids in the body, the inconvenience is not felt. The Weight of Air can easily be ascertained, though till the middle of the seventeenth century the air was believed to be without weight. The accompanying illustration will prove the weight of air. Take an ordinary balance; and suspend to one side a glass globe fitted with a stop-cock. From this globe extract the air by means of the air-pump, and weigh it. When the exact weight is ascertained turn the stop-cock, the air will rush in, and the globe will then pull down the balance, thus proving that air possesses weight. The experiments of Torricelli and Otto von Guerike, however, demonstrated that the air has weight and great pressure. Torricelli practically invented the barometer, but Otto von Guerike, by the cups known as Magdeburg Hemispheres, proved the pressure of the outward air. This apparatus is well known, and consists of two hollow copper hemispheres which fit very closely. By means of the air-pump which he invented in 1650, Otto von Guerike exhausted the air from the closed hemispheres. So long as air remained in them, there was no great difficulty in separating them; but when it had been finally exhausted, the pressure of the surrounding atmosphere was so great that the hollow spheres could not be dragged asunder even by horses harnessed to rings which had been inserted in the globes.
Fig. 46.—Magdeburg Hemispheres.
The Air-Pump is a very useful machine, and we will now briefly explain its action. The inventor was, as remarked above, Otto von Guerike, of Magdeburg. The pump consists of a cylinder and piston and rod, with two valves opening upwards—one valve being in the bottom of the cylinder, the other in the piston. This pump is attached by a tube to a plate with a hole in it, one extremity of the tube being fixed in the centre of the plate, and the other at the valve at the bottom of the cylinder. A glass shade, called the receiver, is placed on the top of the plate, and of course this shade will be full of air (fig. 47).
Fig. 47.—The air-pump.
When the receiver is in position, we begin to work the pump. We have said there are two valves. So when the piston is drawn up, the cylinder would be quite empty did not the valve at the bottom, opening upwards, admit some air from the glass shade through the tube to enter the cylinder. Now the lower part of the cylinder is full of air drawn from the glass shade. When we press the piston down again, we press against the air in it, which, being compressed, tries to escape. It cannot go back, because the valve at the bottom of the cylinder won’t open, so it escapes by the valve in the piston, and goes away. Thus a certain amount of air is got rid of at each stroke of the piston. Two cylinders and pistons can be used, and so by means of cog-wheels, etc., the air may be rapidly exhausted from the receiver. Many experiments are made with the assistance of the air-pump and receiver, though the air is never entirely exhausted from the glass.
The “Sprengel” air-pump is used to create an almost perfect vacuum, by putting a vessel to be exhausted in connection with the vacuum at the top of a tube of mercury thirty inches high. Some air will bubble out, and the mercury will fall. By filling up again and repeating the process, the air vessel will in time be completely exhausted. This is done by Mr. Sprengel’s pump, and a practically perfect vacuum is obtained, like the Torricellian vacuum.
The “Torricellian vacuum” is the empty space above the column of mercury in the barometer which we will proceed to describe. Air has a certain weight or pressure which is sufficient to raise a column of mercury thirty inches. We will prove this by illustration. Take a bent tube and fill it with mercury; the liquid will stand equally high in both arms, in consequence of the ratio of equilibrium in fluids, of which we shall read more when we come to consider Water. So the two columns of mercury are in equilibrium. (See A.) Now stop the arm a with a cork, and take out half the mercury. It will remain in one arm only. Remove the cork, and the fluid will fall in both arms, and remain in equilibrio. If a long bent glass tube be used, the arms being thirty-six inches high, the mercury will fall to a point c, which measures 29·9 inches from the bottom. If the tube be a square inch in bore, we have 29·9 cubic inches of mercury, weighing 14⅘ lbs., balancing a column of air one square inch thick and as high as the atmosphere. So the mercury and the column of air must weigh the same. Thus every square inch on the earth supports a weight of (nearly) 15 lbs (figs. 48 and 50).
Fig. 48.—Air Pressure.
The barometer invented by Pascal, working on the investigations of Torricelli, is a very simple and useful instrument. Fill a tube with mercury from which all moisture has been expelled, and turn it over in a dish of mercury; the mercury will rise to a certain height (30 inches), and no higher in vacuo. When the pressure of the air increases the mercury rises a little, and falls when the pressure is removed. Air charged with aqueous vapour is lighter than dry air, so a fall in the mercury indicates a certain amount of water-vapour in the air, which may condense and become rain. The action of mercury is therefore used as a weather-glass, by which an index-point shows the movements of the fluid, by means of a wheel over which a thread passes, sustaining a float and a counterpoise. When the mercury rises the float goes up, and the weight falls, and turns the wheel by means of the thread. The wheel having a pointer on the dial tells us how the mercury moves. This weather-glass is the usual syphon barometer with the float on the surface and a weight (fig. 50).
Fig. 49.—The Barometer.
Fig. 50.—Syphon barometer.
The Syphon Barometer is a bent tube like the one already shown, with one limb much shorter than the other.
The Aneroid Barometer, so called because it is “without moisture,” is now in common use. In these instruments the atmospheric pressure is held in equilibrium by an elastic metal spring or tube. A metal box, or tube, is freed from air, and then hermetically sealed. This box has a flexible side, the elasticity of which, and the pressure of the air on it, keep each other in equilibrium. Upon this elastic side the short arm of a lever is pressed, while the longer arm works an index-point, as in the circular barometer. When pressure increases the elastic box “gives”; when pressure diminishes it returns to its former place, and the index moves in the opposite direction. It is necessary to compare and “set” the aneroid with the mercurial barometer to ensure correctness. A curved tube is sometimes used, which coils and uncoils like a spring, according to the pressure on it.
Fig. 51.—The Water Barometer.
There are other barometers, such as the Water Barometer, which can be fixed against the side of a house, and if the water be coloured, it will prove a useful indicator. As the name indicates, water is used instead of mercury, but as the latter is thirteen-and-half times heavier than water, a much longer tube is necessary; viz., one about thirty-five feet in length. The construction is easy enough. A leaden pipe can be fixed against the house; on the top is a funnel furnished with a stop-cock, and placed in a vase of water. The lower part of the tube is bent, and a glass cylinder attached, with another stop-cock—the glass being about three feet long, and graduated. Fill the tube with water, shut the upper stop-cock, and open the lower one. The vacuum will be formed in the top of the tube, and the barometer will act on a larger scale than the mercury.
The Glycerine Barometer, invented by Mr. Jordan, and in use at the Times office, registers as more than one inch movements which on the mercurial thermometer are only one-tenth of an inch, and so are very distinctly visible. The specific gravity of pure glycerine is less than one-tenth that of mercury, so the mean height of the glycerine column is twenty-seven feet at sea level. The glycerine has, however, a tendency to absorb moisture from the air, but Mr. Jordan, by putting some petroleum oil upon the glycerine, neutralized that tendency, and the atmospheric pressure remains the same. A full description of this instrument was given in the Times of 25th October, 1880.
Fig. 52.—The principle of the diving-bell.
The uses of the barometer are various. It is employed to calculate the heights of mountains; for if a barometer at sea level stand at 30", it will be lower on a mountain top, because the amount of air at an elevation of ten thousand feet is less than at the level of the sea, and consequently exercises less pressure, and the mercury descends. [The pressure is on the bulb of mercury at the bottom, not on the top, remember.]
The pressure of the air at the tops of mountains sometimes decreases very much, and it is not sufficiently dense for perfect respiration, as many people find. Some climbers suffer from bleeding at the nose, etc., at great altitudes. This is occasioned by the action of the heart, which pumps with great force, and the outward pressure upon the little veins being so much less than usual, they give way.
Fig. 53.—Diver under water.
Many important instruments depend upon atmospheric pressure. The most important of these is the pump, which will carry us to the consideration of water and Fluids generally. The fire-engine is another example, but we will now proceed to explain the diving-bell already referred to.
Fig. 52 represents the experiment of the diving-bell, which is so simple, and is explained below. It belongs to the same category of experiments as those relating to the pressure of air and compression of gas. Two or three flies have been introduced into the glass, and they prove by their buzzing about that they are quite at their ease in the rather confined space.
The Diving-Bell in a crude form appears to have been used as early as 1538. It was used by two Greeks in the presence of the Emperor Charles V., and numerous spectators. In the year 1720 Doctor Halley improved the diving-bell, which was a wooden box or chamber open at the bottom. Air casks were used to keep the inmate supplied with air. The modern diving-bell was used by Smeaton in 1788, and was made of cast iron. It sinks by its own weight. The pressure of the air inside is sufficient to keep the water out. Air being easily compressed, it is always pumped in to keep the hollow iron “bell” full, and to supply the workmen. There are inventions now in use by which the diver carries a supply of air with him on his back, and by turning a tap can supply himself for a long time at a distance from the place of descent, and thus is able to dispense with the air-tube from the boat at the surface. This apparatus was exhibited at the Crystal Palace some years ago.
Fig. 54.—The Hand Fire-Engine
The Pump.
We have seen in the case of the Water Barometer that the pressure of the air will sustain a column of water about thirty feet high. So the distance between the lower valve and the reservoir or cistern must not be more than thirty-two feet, practically the distance is about twenty-five feet in pumps.
We can see by the illustration that the working is much the same as in the air-pump. The suction pipe B is closed by the valve C, the cylinder D and spout E are above, the piston rod F lifts the air-tight piston in which is a valve H. When the piston is raised the valve C opens and admits the water into the cylinder. When the piston is depressed the valve C is closed, the water already in forces H open, and passing through the piston, reaches the cylinder and the spout (fig. 55).
The hand fire-engine depends upon the action of compressed air, which is so compressed by pumping water into the air chamber a. The tube is closed at g, and the pumps e e drive water into the air chamber. At length the tap is opened, and the air drives the water out as it is continually supplied (fig. 54).
Compressed air was also used for driving the boring machines in the Mount Cenis tunnel. In this case also the air was compressed by water, and then let loose, like steam, to drive a machine furnished with boring instruments.
Fig. 55..—The Pump.
A pretty little toy may be made, and at the same time exemplify an interesting fact in Physics. It is called the ludion, and it “lies in a nut shell” in every sense. When the kernel has been extracted from the shell, fasten the portions together with sealing wax, so that no water can enter. At one end O, as in the illustration, leave a small hole about as large as a pin’s head; fasten two threads to the sealing wax, and to the threads a wooden doll. Let a weight be attached to his waist. When the figure is in equilibrium, and will float, put it into a jar of water, and tie a piece of bladder over the top. If this covering be pressed with the finger, the doll will descend and remount when the finger is removed. By quick successive pressure the figure may be made to execute a pas seul. The reason of the movement is because the slight cushion of air in the upper part of the vase is compressed, and the little water thus caused to enter the nut shell makes it heavier, and it descends with the figure (fig. 56).
We have now seen that air is a gas, that it exercises pressure, that it possesses weight. We know it can be applied to many useful purposes, and that the air machines and inventions—such as the air-pump and the “Pneumatic Despatch”—are in daily use in our laboratories, our steam engines, our condensed milk manufactories, and in many other industries, and for our social benefit. Compressed air is a powerful motor for boring machinery in tunnels where steam cannot be used, even if water could be supplied, for smoke or fire would suffocate the workers. To air we owe our life and our happiness on earth.
Pneumatics, then, deals with the mechanical properties of elastic fluids represented by air. A gas is an elastic fluid, and differs very considerably, from water; for a gas will fill a large or small space with equal convenience, like the genii which came out of the bottle and obligingly retired into it again to please the fisherman. We have seen that the pressure of the air is 14⅘ per square inch at a temperature of 32°. It is not so easy to determine the pressure of air at various times as that of water. We can always tell the pressure of a column of water when we find the height of the column, as it is the weight of so many cubic inches of the liquid. But the pressure of the atmosphere per square inch at any point is equal to the weight of a vertical column of air one inch square, reaching from that point to the limit of the atmosphere above it. Still the density is not the same at all points, so we have to calculate. The average pressure at sea level is 14·7 per square inch, and sustains a column of mercury 1 square inch in thickness, 29·92, or say 30 inches high. These are the data upon which the barometer is based, as we have seen.
Fig: 56.—The “Ludion.”
In our article upon “Chemistry” we will speak more fully of the atmosphere and of its constituents, etc.