Читать книгу Jelly-Fish, Star-Fish, and Sea-Urchins: Being a Research on Primitive Nervous Systems - George John Romanes - Страница 16
Electrical Stimulation.
ОглавлениеAll the excitable parts of all the Medusæ which I have examined are highly sensitive to electrical stimulation, both of the constant and of the induced current.
Exploration with needle-point terminals and induction shocks of graduated strength showed that certain parts or tracts of the nectocalyx are more sensitive than others. The most sensitive parts are those which correspond with the distribution of the main nerve-trunks, i.e. round the margin of the nectocalyx and along the course of the radial tubes. The external or convex surface of a nectocalyx or umbrella is totally insensitive to stimulation, and the same statement applies to the whole thickness of the gelatinous substance to which the neuro-muscular sheet is attached.
In all other respects the excitable tissues of the Medusæ in their behaviour towards electrical stimulation conform to the rules which are followed by excitable tissues of other animals. Thus, closure of the constant current acts as a stronger stimulus than does opening of the same, while the reverse is true of the induction shock; and exhaustion supervenes under the influence of prolonged excitation. Moreover, I have obtained evidence of that polarization of nerve-tissues under the influence of the constant current, which is known to physiologists by the term "electrotonus;" but it would be somewhat tedious to detail the evidence on this head which I have already published elsewhere.[11] Tetanus produced by faradaic electricity is not of the nature of an apparently single and prolonged contraction, but that of a number of contractions rapidly succeeding one another, as in the case of the heart under similar excitation. This at least applies to Sarsia. In the case of Aurelia, tolerably strong faradization does cause a more or less well-pronounced tetanus. The continuity of the spasm is, indeed, often interrupted by momentary and partial relaxations. These interruptions are the more frequent the weaker the current; so that, at a certain strength of the latter, the tetanus is of a wild and tumultuous nature; but with strong currents the spasm is tolerably uniform. That in all cases the tetanus is due to summation of contractions may be very prettily shown by the following experiment. An Aurelia is cut into a spiral strip, and all its lithocysts are removed; single induction-shocks are then thrown in with a key at one end of the strip—every shock, of course, giving rise to a contraction wave. If these shocks are thrown in at a somewhat fast rate, two contraction waves may be made at the same time to course along the spiral strip, one behind the other; but if the shocks are thrown in at a still faster rate, so as to diminish the distance between any two successive waves, a point soon arrives at which every wave mounts upon its predecessor; and if several waves be thus made to coalesce, the whole strip becomes thrown into a state of persistent contraction.
In this way sustained tetanus, or single contraction waves, or any intermediate phase, may be instantly produced at pleasure. In such experiments, moreover, it is interesting to observe that, no matter how long the strip be, whatever disturbances are set up at one end are faithfully transmitted to the other. For instance, if an Aurelia be cut into the longest possible strip with a remnant of the disk left attached at one end, as represented in Fig. 11 (p. 70), then all the peculiar time relations between successive contractions which are intentionally caused by the experimenter at one end of the strip, are afterwards accurately reproduced at the other end of the strip by the remainder of the disk. Now, as this fact is observable however complex these time relations may be, and however rapidly the successive stimuli are thrown in, I think it is a point of some interest that these complicated relations among rapidly succeeding stimuli do not become blended during their passage along the thirty or forty inches of contractile tissue. The fact, of course, shows that the rate of transmission is so identical in the case of all the stimuli originated, that the sum of the effects of any series of stimuli is delivered at the distal end of the strip, with all its constituent parts as distinct from one another as they were at starting from the proximal end of the strip.