Читать книгу Taller de Arduino. Experimentando con Arduino MKR 1010 - German Tojeiro Calaza - Страница 20

Características de Arduino MKR1000

Оглавление

Como toda placa de prototipado o desarrollo, es necesario conocer las características más importantes. En este caso verá las que incluye Arduino MKR1000. En la figura 1.21 se observa su apariencia física y su aspecto virtual para el diseño de proyectos utilizando el fritzing.

Arduino MKR1000 se ha diseñado para ofrecer una solución práctica y rentable para los fabricantes que buscan agregar conectividad wifi a sus proyectos con una experiencia previa mínima en redes. Está basado en el Atmel ATSAMW25 SoC (system on chip), que forma parte de la familia SmartConnect de dispositivos inalámbricos Atmel, diseñada específicamente para proyectos y dispositivos IoT. El ATSAMW25 se compone de tres bloques principales:

SAMD21 Cortex-M0 + MCU de bajo consumo de 32 bits

WINC1500 de baja potencia; 2.4 GHz IEEE® 802.11 b/g/n WiFi

ECC508 Crypto Authentication

El ATSAMW25 incluye también una sola antena de PCB de flujo 1×1. El diseño incluye un circuito de carga Li-Po que permite que el MKR1000 funcione con batería o con 5 V externos, cargando la batería Li-Po mientras funciona con energía externa. El cambio de una fuente a otra se realiza de forma automática. Una buena potencia de cómputo de 32 bits, el amplio conjunto habitual de interfaces de E S, wifi de baja potencia con un Cryptochip para una comunicación segura. Exactamente igual que su hermano el MKR 1010, con el que desarrollará la mayoría de los proyectos de este libro, es posible suministrar energía de tres maneras. Se puede hacer a través del puerto microUSB o alimentarlo a través del pin VIN. En los dos casos se requiere de una diferencia de potencial de 5 V. Si desea crear un dispositivo autónomo puede hacer uso de una batería, dispone de pines de conexión para baterías. La recomendación del fabricante es que utilice una batería de 3.7 V y, como mínimo, 700 mAh (miliamperio hora). Es sencillo calcular la duración en horas de su batería si conoce el con-sumo máximo de corriente (mA) y la capacidad de la batería (mAh).


La multiplicación por el factor 0.7 se lleva a cabo debido a los factores externos que pueden afectar a la duración de la batería. Algo a muy a tener en cuenta y con la que debe tener mucha precaución es la diferencia de potencial que suministra a las entradas. Funcionan con 3.7 V y la recomendación es que no debe de suministrar el valor típico de 5 V a ninguna entrada. Esto puede dañar la placa. En la figura 1.22 se observa un ejemplo de alimentación con una Li-Po.

MicrocontroladorSAMD21 Cortex-M0 + MCU de bajo consumo de 32 bits
Fuente de alimentación de la placa (USB/VIN)5 V
Batería soportada (*)Li-Po de una celda, 3.7 V, 700 mAh mínimo
Voltaje de funcionamiento del circuito3.3V
Pernos digitales de E/S8
PWM pines12 (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, A3 - o 18 -, A4 - o 19)
UART1
SPI1
I2C1
Clavijas de entrada analógica7 (ADC 8/10/12 bits)
Pernos de salida analógica1 (DAC 10 bits)
Interrupciones externas8 (0, 1, 4, 5, 6, 7, 8, A1 -o 16-, A2 - o 17)
Corriente DC por pin de E/S7 mA
Memoria flash256 kB
SRAM32 kB
EEPROMno
Velocidad de reloj32.768 kHz (RTC), 48 MHz
Led_BUILTIN6
Dispositivo USB de velocidad completa y host integrado
Longitud61.5 mm
Anchura25 mm
Peso32 g
Taller de Arduino. Experimentando con Arduino MKR 1010

Подняться наверх