Читать книгу Ice Adhesion - Группа авторов - Страница 29
References
Оглавление1 1. P. Cloud, A working model of the primitive Earth, Am. J. Sci., 272, 537-548 (1972).
2 2. A. Morbidelli, J. Chambers, J. I. Lunine, J. M. Petit, F. Robert, G. B. Valsecchi, and K. E. Cyr, Source regions and timescales for the delivery of water to the Earth, Meteorit. Planet. Sci., 35, 1309-1320 (2000).
3 3. N. H. Sleep, K. Zahnle, and P. S. Neuhoff, Initiation of clement surface conditions on the earliest Earth, Proc. Natl. Acad. Sci. U.S.A., 98, 3666-3672 (2001).
4 4. Y. Ohtomo, T. Kakegawa, A. Ishida, T. Nagase, and M. T. Rosing, Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks, Nature Geosci., 7, 25-28 (2013).
5 5. D. T. Flannery and M. R. Walter, Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem, Aust. J. Earth Sci., 59, 1-11 (2012).
6 6. H. Tang and Y. Chen, Global glaciations and atmospheric change at ca. 2.3 Ga, Geosci. Front., 4, 583-596 (2013).
7 7. A. P. Coleman, The Lower Huronian ice age, J. Geology, 16, 149-158 (1908).
8 8. J. Sapp, The prokaryote-eukaryote dichotomy: Meanings and mythology, Microbiol. Mol. Biol. Rev., 69, 292-305 (2005).
9 9. G. D. Love, E. Grosjean, C. Stalvies, D. A. Fike, J. P. Grotzinger, A. S. Bradley, A. E. Kelly, M. Bhatia, W. Meredith, C. E. Snape, S. A. Bowring, D. J. Condon, and R. E. Summons, Fossil steroids record the appearance of Demospongiae during the Cryogenian period, Nature, 457, 718-721 (2009).
10 10. P. F. Hoffman, D. S. Abbot, Y. Ashkenazy, D. I. Benn, J. J. Brocks, P. A. Cohen, G. M. Cox, J. R. Creveling, Y. Donnadieu, D. H. Erwin, I. J. Fairchild, D. Ferreira, J. C. Goodman, G. P. Halverson, M. F. Jansen, G. Le Hir, G. D. Love, F. A. Macdonald, A. C. Maloof, C. A. Partin, G. Ramstein, B. E. J. Rose, C. V. Rose, P. M. Sadler, E. Tziperman, A. Voigt, and S. G. Warren, Snowball Earth climate dynamics and Cryogenian geology-geobiology, Sci. Adv., 3, el600983 (2017).
11 11. E. Arnaud, G. P. Halverson, and G. Shields-Zhou, The geological record of Neoproterozoic ice ages, Geological Soc. London, Memoirs, 36, 1-16 (2011).
12 12. A. Y. Zhuravlev and R. Riding, The Ecology of the Cambrian Radiation, Columbia University Press, New York (2001).
13 13. G. J. Retallack, Ediacaran life on land, Nature, 493, 89-92 (2012).
14 14. M. V. Caputo and J. C. Crowell, Migration of glacial centers across Gondwana during Paleozoic era, Geol. Soc. Am. Bull, 96, 1020-1036 (1985).
15 15. J. A. Clack, Gaining Ground: The Origin and Evolution of Tetrapods, 2nd edition, Indiana University Press (2012).
16 16. R. A. Berner, Atmospheric oxygen over Phanerozoic time, Proc. Natl. Acad. Sci. U.S.A., 96, 10955-10957 (1999).
17 17. I. P. Montañez and C. J. Poulsen, The late Paleozoic ice age: An evolving paradigm, Annu. Rev. Earth Planet. Sci., 41, 629-656 (2013).
18 18. T. R. Holtz and L. V. Rey, Dinosaurs: The Most Complete, Up-to-date Encyclopedia for Dinosaur Lovers of all Ages, 1st edition, Random House, New York (2007).
19 19. B. Saltzman, Carbon dioxide and the δ180 record of late-Quaternary climatic change: a global model, Clim. Dyn., 1, 77-85 (1987).
20 20. M. R. House, Orbital forcing timescales: an introduction, Geol. Soc. London Spec. Publ., 85, 1-18 (1995).
21 21. M. Walker, S. Johnsen, S. O. Rasmussen, T. Popp, J.-P. Steffensen, P. Gibbard, W. Hoek, J. Lowe, J. Andrews, S. Bjorck, L. C. Cwynar, K. Hughen, P. Kershaw, B. Kromer, T. Litt, D. J. Lowe, T. Nakagawa, R. Newnham, and J. Schwander, Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records, J. Quat. Sci., 24, 3-17 (2009).
22 22. J. Zachos, M. Pagani, L. Sloan, E. Thomas, and K. Billups, Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686-693 (2001).
23 23. N. E. Levin, Environment and climate of early human evolution, Annu. Rev. Earth Planet. Sci., 43, 405-429 (2015).
24 24. N. J. Stevens, E. R. Seiffert, P. M. O’Connor, E. M. Roberts, M. D. Schmitz, C. Krause, E. Gorscak, S. Ngasala, T. L. Hieronymus, and J. Temu, Palaeontological evidence for an Oligocene divergence between Old World monkeys and apes, Nature, 497, 611-614 (2013).
25 25. A. Mann and M. Weiss, Hominoid phylogeny and taxonomy: A consideration of the molecular and fossil evidence in an historical perspective, Mol. Phylogenet. Evol., 5, 169-181 (1996).
26 26. R. Potts, Hominin evolution in settings of strong environmental variability, Quat. Sci. Rev., 73, 1-13 (2013).
27 27. S. C. Antón, R. Potts, and L. C. Aiello, Evolution of early Homo: An integrated biological perspective, Science, 345, 1236828 (2014).
28 28. H. Roche, A. Delagnes, J. P. Brugal, C. Feibel, M. Kibunjia, V. Mourre, and P. J. Texier, Early hominid stone tool production and technical skill 2.34 Myr ago in West Turkana, Kenya, Nature, 399, 57-60 (1999).
29 29. M. H. Trauth, M. A. Maslin, A. L. Deino, M. R. Strecker, A. G. N. Bergner, and M. Dühnforth, High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution, J. Human Evol., 53, 475-486 (2007).
30 30. P. B. deMenocal, Climate and human evolution, Science, 331, 540-542 (2011).
31 31. E. S. Vrba, Climate, heterochrony, and human evolution, J. Anthropol. Res., 52, 1-28 (1996).
32 32. E. Indriati, C. C. Swisher, C. Lepre, R. L. Quinn, R. A. Suriyanto, A. T. Hascaryo, R. Griin, C. S. Feibel, B. L. Pobiner, M. Aubert, W. Lees, and S. C. Antón, The age of the 20 meter Solo River terrace, Java, Indonesia and the survival of Homo erectus in Asia, PLoS ONE, 6, e21562 (2011).
33 33. T. Higham, K. Douka, R. Wood, C. B. Ramsey, F. Brock, L. Basell, M. Camps, A. Arrizabalaga, J. Baena, C. Barroso-Ruíz, C. Bergman, C. Boitard, P. Boscato, M. Caparrós, N. J. Conard, C. Draily, A. Froment, B. Galván, P. Gambassini, A. Garcia-Moreno, S. Grimaldi, P. Haesaerts, B. Holt, M.-J. Iriarte-Chiapusso, A. Jelinek, J. F. Jordá Pardo, J.-M. Maíllo-Fernández, A. Marom, J. Maroto, M. Menéndez, L. Metz, E. Morin, A. Moroni, F. Negrino, E. Panagopoulou, M. Peresani, S. Pirson, M. de la Rasilla, J. Riel-Salvatore, A. Ronchitelli, D. Santamaria, P. Semal, L. Slimak, J. Soler, N. Soler, A. Villaluenga, R. Pinhasi, and R. Jacobi, The timing and spatiotemporal patterning of Neanderthal disappearance, Nature, 512, 306-309 (2014).
34 34. J.-J. Hublin, A. Ben-Ncer, S. E. Bailey, S. E. Freidline, S. Neubauer, M. M. Skinner, I. Bergmann, A. Le Cabec, S. Benazzi, K. Harvati, and P. Gunz, New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens, Nature, 546, 289-292 (2017).
35 35. K. Douka, T. F. G. Higham, R. Wood, P. Boscato, P. Gambassini, P. Karkanas, M. Peresani, and A. M. Ronchitelli, On the chronology of the Uluzzian, J. Human Evol., 68, 1-13 (2014).
36 36. D. S. Adler, G. Bar-Oz, A. Belfer-Cohen, and O. Bar-Yosef, Ahead of the game: Middle and upper Palaeolithic hunting behaviors in the Southern Caucasus, Curr. Anthropol., 47, 89-118 (2006).
37 37. S. McBrearty and A. S. Brooks, The revolution that wasn’t: a new interpretation of the origin of modern human behavior, J. Human Evol., 39, 453-563 (2000).
38 38. S. López, L. van Dorp, and G. Hellenthal, Human dispersal out of Africa: A lasting debate, Evol. Bioinf., 11, 57-68 (2015).
39 39. T. Bays and L. Webster, Nine Thousand Years of Skis: Norwegian wood to French plastic, Mather Monograph Series #1, National Ski Hall of Fame Press, Ishpeming, Mich. (1980).
40 40. J. A. W. Dollar, A. Wheatley, A. G. T. Leisering, and H. M. Hartmann, A Handbook of Horse-shoeing, with Introductory Chapters on the Anatomy and Physiology of the Horse’s Foot, W.R. Jenkins, New York (1898).
41 41. B. Clark, Hippodonomia, or The True Structure, Laws, and Economy of the Horse’s Foot: Also Podophthora, or A Ruinous Defect in the Principle of the Common Shoe Detected., 2nd edition, Gaulter, London, UK (1829).
42 42. J. Boudot (Ed.), Histoire de l'Académie Royale des Sciences, de l’Imprimerie Royale, à Paris (1756).
43 43. R. Walker, An Account of Some Remarkable Discoveries in the Production of Artificial Cold; with Experiments on the Congelation of Quicksilver in England: Likewise, Observations on the Best Methods of Producing Artificial Cold; and Their Application to Useful Purposes in Hot Climates. Interspersed with Philosophical and Explanatory Notes; and Illustrated with a Plate, Representing the Different Kinds of Apparatus Which are Applicable to the Various Purposes Required, Printed for Messrs. Fletcher and Harwell, Oxford, UK (1796).
44 44. C. Blagden, X. Experiments on the cooling of water below its freezing point, Philos. Trans. R. Soc. London, 78, 125-146 (1788).
45 45. F. H. Getman, Sir Charles Blagden, F. R. S., Osiris, 3, 69-87 (1937).
46 46. M. Wolfe and H. Baker, Descriptio fontis hieronis in metallifodinis chemnicensibus in hungaria, anno 1756 extructi; auctore, Philos. Trans. R. Soc. London, 52, 547-554 (1761).
47 47. A. Neuburger and H. L. Brose, The Technical Arts and Sciences of the Ancients, Barnes & Noble, New York (1969).
48 48. E. M. Webster, James Harrison: 1815-1893, Vic. Hist. J., 21, 1-13 (1945).
49 49. S. Freidberg, Fresh: A Perishable History, Belknap Press of Harvard University Press, Cambridge, MA (2009).
50 50. J. C. A. Peltier, Nouvelles expériences sur la caloricité des courans électriques, Annales Chimie Physique, 56, 371-386 (1834).
51 51. S. Rajasekar and R. Velusamy, Quantum Mechanics I: The Fundamentals, CRC Press, New York (2014).
52 52. T. J. Seebeck, Ueber die magnetishe polarisation der metalle und erze durch temperatur-differenz, Annalen Physik Chemie, 6, 1-20 (1826).
53 53. H. C. Ørsted, Nouvelles expériences de M. Seebeck sur les actions électo-magnétiques, Annales Chimie Physique, 22, 199-201 (1823).
54 54. T. W. Kerlin and M. Johnson, Practical Thermocouple Thermometry, 2nd edition, International Society of Automation, Research Triangle Park, NC (2012).
55 55. M. V. Vedernikov and E. K. Iordanishvili, A.F. Ioffe and origin of modern semiconductor thermoelectric energy conversion, in: Proceedings of the 17th International Conference on Thermoelectrics ICT98, pp. 37-42 (1998).
56 56. H. J. Goldsmid and R. W. Douglas, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys., 5, 386-390 (1954).
57 57. B. C. Sales, Thermoelectric devices: Refrigeration and power generations with no moving parts, in: Encyclopedia of Materials: Science and Technology, K. Buschow, (Ed.), pp. 9179-9185, Elsevier, Oxford (2001).
58 58. P. N. Stearns, The Industrial Revolution in World History, 4th edition, Westview Press, Boulder, Colo. (2013).
59 59. S. J. C. Nixon, The Invention of the Automobile (Karl Benz and Gottlieb Daimler), Country Life Ltd., London, UK (1936).
60 60. G. A. Niemeyer, The Automotive Career of Ransom E. Olds, Bureau of Business and Economic Research, Graduate School of Business Administration, Michigan State University, East Lansing (1963).
61 61. V. Curcio, Henry Ford, Oxford University Press, Oxford, UK (2013).
62 62. B. C. Howard, The surprising history of road salt, https://news.nationalgeographic.com/news/2014/02/140212-road-salt-shortages-melting-ice-snow-science/, accessed: 2019-01-09.
63 63. V. R. Kelly, S. E. Findlay, W. H. Schlesinger, K. Menking, and A. M. Chatrchyan, Road salt: Moving toward the solution, Report, The Cary Institute of Ecosystem Studies, Millbrook, NY (2010).
64 64. D. G. McCullough, The Wright Brothers, 1st edition, Simon & Schuster, New York (2015).
65 65. T. A. Heppenheimer, A Brief History of Flight: From Balloons to Mach 3 and Beyond, Wiley, New York (2001).
66 66. Preliminary data summary: Airport deicing operations, Report, United States Environmental Protection Agency (2000).
67 67. Kilfrost Ltd., History of Kilfrost deicing products, https://www.copybook.com/companies/kilfrost/history-of-kilfrost-gallery/glycol-deicer-01, accessed: 2019-01-09.
68 68. M. Volmer and A. Weber, Keimbildung in übersättigten gebilden, Zeit. Physikalische Chemie, 119U, 277-301 (1926).
69 69. R. Becker and W. Döring, Kinetische behandlung der keimbildung in übersättigten dampfen, Ann. Phys., 416, 719-752 (1935).
70 70. J. Frenkel, A general theory of heterophase fluctuations and pretransition phenomena, J. Chem. Phys., 7, 538-547 (1939).
71 71. S. Karthika, T. K. Radhakrishnan, and P. Kalaichelvi, A review of classical and non-classical nucleation theories, Cryst. Growth Des., 16, 6663-6681 (2016).
72 72. J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, Boston (2005).
73 73. C. A. Angell, W. J. Sichina, and M. Oguni, Heat capacity of water at extremes of supercooling and superheating, J. Phys. Chem., 86, 998-1002 (1982).
74 74. P. T. Hacker and R. G. Dorsch, A summary of meteorological conditions associated with aircraft and a proposed method of selecting design criterions for ice-protection equipment, Report, United States National Advisory Committee for Aeronautics, Washington, D.C. (1951).
75 75. N. H. Fletcher, Size effect in heterogeneous nucleation, J. Chem. Phys., 29, 572-576 (1958).
76 76. P. C. Mahata, The effect of contact angle, surface roughness, and adsorption of heterogeneous nucleation of condensing water, PhD thesis, Dept. of Mechanical Engineering, University of Missouri - Rolla (1974).
77 77. G. Malenkov, Liquid water and ices: understanding the structure and physical properties, J. Phys.: Condens. Matter, 21, 283101 (2009).
78 78. P. Eberle, M. K. Tiwari, T. Maitra, and D. Poulikakos, Rational nanostructuring of surfaces for extraordinary icephobicity, Nanoscale, 6, 4874-4881 (2014).
79 79. L. Cao, A. K. Jones, V. K. Sikka, J. Wu, and D. Gao, Anti-icing superhydrophobic coatings, Langmuir, 25, 12444-12448 (2009).
80 80. K. K. Varanasi, T. Deng, J. D. Smith, M. Hsu, and N. Bhate, Frost formation and ice adhesion on superhydrophobic surfaces, Appl. Phys. Lett., 97, 234102 (2010).
81 81. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, Springer, New York (2010).
82 82. P. W. Atkins and J. De Paula, Atkins’ Physical Chemistry, Oxford University Press, Oxford, UK (2014).
83 83. R. S. Smith and B. D. Kay, The existence of supercooled liquid water at 150 K, Nature, 398, 788-791 (1999).
84 84. W. C. Navidi, Statistics for Engineers and Scientists, McGraw-Hill, New York (2014).
85 85. F. Pellerey, M. Shaked, and J. Zinn, Nonhomogeneous Poisson processes and logconcavity, Probab. Eng. Inf. Set., 14, 353-373 (2000).
86 86. Fighting flying ice, Popular Mechanics Magazine, p. 82 (February 1946).
87 87. D. Loughborough and E. Haas, Reduction of the adhesion of ice to de-icer surfaces, J. Aeronaut. Sci., 13, 126-134 (1946).
88 88. T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95, 65-87 (1805).
89 89. L. Makkonen, Surface melting of ice, J. Phys. Chem. B, 101, 6196-6200 (1997).
90 90. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988-994 (1936).
91 91. A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546-551 (1944).
92 92. A. B. D. Cassie, Contact angles, Disc. Faraday Soc., 3, 11-16 (1948).
93 93. R. E. Johnson Jr. and R. H. Dettre, Contact angle hysteresis, in: Contact Angle, Wettability, and Adhesion, Adv. Chem. Ser. vol 43, pp. 112-135, American Chemical Society (1964).
94 94. L. Makkonen, Ice adhesion—theory, measurements and countermeasures, J. Adhesion Set. Technol., 26, 413-445 (2012).
95 95. P. Tourkine, M. Le Merrer, and D. Quéré, Delayed freezing on water repellent materials, Langmuir, 25, 7214-7216 (2009).
96 96. L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin, and J. Aizenberg, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets, ACS Nano, 4, 7699-7707 (2010).
97 97. T. Maitra, M. K. Tiwari, C. Antonini, P. Schoch, S. Jung, P. Eberle, and D. Poulikakos, On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature, Nano Letters, 14, 172-182 (2014).
98 98. S. Jung, M. Dorrestijn, D. Raps, A. Das, C. M. Megaridis, and D. Poulikakos, Are superhydrophobic surfaces best for icephobicity?, Langmuir, 27, 3059-3066 (2011).
99 99. H. Saito, K. Takai, and G. Yamauchi, Water- and ice-repellent coatings, Surf. Coat. Int., 80, 168-171 (1997).
100 100. Y. He, C. Jiang, X. Cao, J. Chen, W. Tian, and W. Yuan, Reducing ice adhesion by hierarchical micro-nano-pillars, Appl. Surf. Sci., 305, 589-595 (2014).
101 101. S. A. Kulinich and M. Farzaneh, Ice adhesion on super-hydrophobic surfaces, Appl. Surf. Sci., 255, 8153-8157 (2009).
102 102. S. A. Kulinich and M. Farzaneh, How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces, Langmuir, 25, 8854-8856 (2009).
103 103. A. Dotan, H. Dodiuk, C. Laforte, and S. Kenig, The relationship between water wetting and ice adhesion, J. Adhesion Sci. Technol., 23, 1907-1915 (2009).
104 104. L. Gao and T. J. McCarthy, Contact angle hysteresis explained, Langmuir, 22, 6234-6237 (2006).
105 105. A. Sarkar and A.-M. Kietzig, Design of a robust superhydrophobic surface: thermodynamic and kinetic analysis, Soft Matter, 11, 1998-2007 (2015).
106 106. H.-J. Butt and M. Kappl, Surface and Interfacial Forces, 2nd edition, Wiley-VCH, Weinheim, Germany (2018).
107 107. X. Wang, K. Binder, C. Chen, T. Koop, U. Pöschl, H. Su, and Y. Cheng, Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations, Phys. Chem. Chem. Phys., 21, 3360-3369 (2019).
108 108. E. J. Y. Ling, V. Uong, J.-S. Renault-Crispo, A.-M. Kietzig, and P. Servio, Reducing ice adhesion on nonsmooth metallic surfaces: Wettability and topography effects, ACS Appl. Mater. Interfaces, 8, 8789-8800 (2016).
109 109. M. He, H. Li, J. Wang, and Y. Song, Superhydrophobic surface at low surface temperature, Appl. Phys. Lett., 98, 093118 (2011).
110 110. H.-J. Wang, X.-K. Xi, A. Kleinhammes, and Y. Wu, Temperature-induced hydrophobic-hydrophilic transition observed by water adsorption, Science, 322, 80-83 (2008).
111 111. C. A. Scholes, G. W. Stevens, and S. E. Kentish, The effect of hydrogen sulfide, carbon monoxide and water on the performance of a PDMS membrane in carbon dioxide/nitrogen separation, J. Membrane Sci., 350, 189-199 (2010).
112 112. D. B. Asay and S. H. Kim, Evolution of the adsorbed water layer structure on silicon oxide at room temperature, J. Phys. Chem. B, 109, 16760-16763 (2005).
113 113. C. A. Ward and K. Sefiane, Adsorption at the solid-cliquid interface as the source of contact angle dependence on the curvature of the three-phase line, Adv. Colloid Interface Sci., 161, 171-180 (2010).
114 114. H. Ghasemi and C. A. Ward, Sessile-water-droplet contact angle dependence on adsorption at the solid-liquid interface, J. Phys. Chem. C, 114, 5088-5100 (2010).
115 115. S. Farhadi, M. Farzaneh, and S. Simard, On stability and ice-releasing performance of nanostructured fluoro-alkylsilane-based superhydrophobic Al alloy2024 surfaces, Int. J. Theo. Appl. Nanotech., 1, 38-44 (2012).
116 116. A. Davis, Y. H. Yeong, A. Steele, I. S. Bayer, and E. Loth, Superhydrophobic nanocomposite surface topography and ice adhesion, ACS Appl. Mater. Interfaces, 6, 9272-9279 (2014).
117 117. Y. Wang, J. Xue, Q. Wang, Q. Chen, and J. Ding, Verification of icepho-bic/anti-icing properties of a superhydrophobic surface, ACS Appl. Mater. Interfaces, 5, 3370-3381 (2013).
118 118. T. Bharathidasan, S. V. Kumar, M. S. Bobji, R. P. S. Chakradhar, and B. J. Basu, Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces, Appl. Surf. Sci., 314, 241-250 (2014).
119 119. M. Susoff, K. Siegmann, C. Pfaffenroth, and M. Hirayama, Evaluation of icephobic coatings-screening of different coatings and influence of roughness, Appl. Surf. Sci., 282, 870-879 (2013).
120 120. S. A. Kulinich, S. Farhadi, K. Nose, and X. W. Du, Superhydrophobic surfaces: Are they really ice-repellent?, Langmuir, 27, 25-29 (2011).
121 121. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd edition, Taylor & Francis, Boca Raton, FL (2005).
122 122. R. Menini and M. Farzaneh, Advanced icephobic coatings, J. Adhesion Sci. Technol, 25, 971-992 (2011).
123 123. M. Nosonovsky and V. Hejazi, Why superhydrophobic surfaces are not always icephobic, ACS Nano, 6, 8488-8491 (2012).
124 124. P. V. Hobbs, Ice Physics, Clarendon Press, Oxford, UK (1974).
125 125. P. Desai and C. Ho, Thermal linear expansion of nine selected AISI stainless steels, Report, American Iron and Steel Institute, Washington, D.C. (1978).
126 126. D. Quéré, Non-sticking drops, Rep. Prog. Phys., 68, 2495-2532 (2005).
127 127. D. Dowson, History of Tribology, 2nd edition, Professional Engineering Publishing, London, UK (1998).
128 128. B. N. J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edition, Springer, Berlin (2000).
129 129. M. Faraday, XXIV. On regelation, and on the conservation of force, The London, Edinburgh, and Dublin Philos. Mag. J. Sci., 17, 162-169 (1859).
130 130. J. Thomson and W. Thomson, I. On recent theories and experiments regarding ice at or near its melting-point, Proc. R. Soc. London, 10, 151-160 (1860).
131 131. O. Reynolds, A. W. Brightmore, and W. H. Moorby, Papers on Mechanical and Physical Subjects, Cambridge University Press, Cambridge, UK (1900).
132 132. F. P. Bowden, T. P. Hughes, and C. H. Desch, The mechanism of sliding on ice and snow, Proc. R. Soc. London Ser. A, 172, 280-298 (1939).
133 133. A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, Physics of ice friction, J. Appl. Phys., 107, 081101 (2010).
134 134. F. P. Bowden, Introduction to the discussion: the mechanism of friction, Proc. R. Soc. London Ser. A, 212, 440-449 (1952).
135 135. B. Bhushan, Introduction to Tribology, John Wiley & Sons, New York (2002).
136 136. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Oxford University Press, Oxford, UK (2001).
137 137. I. Kozlov and A. Shugai, Experimental study of high-speed friction on ice, Fluid Dyn., 26, 145-147 (1991).
138 138. S. C. Colbeck, The kinetic friction of snow, J. Glaciol., 34, 78-86 (1988).
139 139. A. J. Fowler and A. Bejan, Contact melting during sliding on ice, Int. J. Heat Mass Transfer, 36, 1171-1179 (1993).
140 140. V. F. Petrenko and R. W. Whitworth, Physics of Ice, Oxford University Press, Oxford (2002).
141 141. N. H. Fletcher, Surface structure of water and ice, Philosoph. Mag., 7, 255-269 (1962).
142 142. N. H. Fletcher, Surface structure of water and ice II. a revised model, Philosoph. Mag., 18, 1287-1300 (1968).
143 143. R. Lacmann and I. N. Stranski, The growth of snow crystals, J. Cryst. Growth, 13-14, 236-240 (1972).
144 144. J. G. Dash, H. Fu, and J. S. Wettlaufer, The premelting of ice and its environmental consequences, Rep. Prog. Phys., 58, 115-167 (1995).
145 145. N. Fukuta, An origin of the equilibrium liquid-like layer on ice, J. Phys. Colloques, 48, 503-509 (1987).
146 146. L. Makkonen, Surface melting of ice, J. Phys. Chem. B, 101, 6196-6200 (1997).
147 147. G.-J. Kroes, Surface melting of the (0001) face of TIP4P ice, Surf. Sci., 275, 365-382 (1992).
148 148. J. P. Devlin and V. Buch, Surface of ice as viewed from combined spectroscopic and computer modeling studies, J. Phys. Chem., 99, 16534-16548 (1995).
149 149. Y. Furukawa and H. Nada, Anisotropic surface melting of an ice crystal and its relationship to growth forms, J. Phys. Chem. B, 101, 6167-6170 (1997).
150 150. N. Materer, U. Starke, A. Barbieri, M. A. Van Hove, G. A. Somorjai, G. J. Kroes, and C. Minot, Molecular surface structure of ice(0001): dynamical low-energy electron diffraction, total-energy calculations and molecular dynamics simulations, Surf. Sci., 381, 190-210 (1997).
151 151. P. Oksanen and J. Keinonen, The mechanism of friction of ice, Wear, 78, 315-324 (1982).
152 152. A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, Ice friction: The effects of surface roughness, structure, and hydrophobicity, J. Appl. Phys., 106, 024303 (2009).
153 153. S. J. Calabrese, R. Buxton, and G. Marsh, Frictional characteristics of materials sliding against ice, Lubrication Eng., 36, 283-289 (1980).