Читать книгу Sustainable Food Packaging Technology - Группа авторов - Страница 33

References

Оглавление

1 1 FAO (2019). The Food and Agriculture Organization of the United Nations.

2 2 Ahvenainen, R. (2003). Novel Food Packaging Techniques. Woodhead Publishing.

3 3 Torres‐Giner, S., Gil, L., Pascual‐Ramírez, L., and Garde‐Belza, J.A. (2018). Packaging: food waste reduction. Encyclopedia of Polymer Applications 3: 1990–2009.

4 4 Majid, I., Ahmad Nayik, G., Mohammad Dar, S., and Nanda, V. (2018). Novel food packaging technologies: innovations and future prospective. Journal of the Saudi Society of Agricultural Sciences 17 (4): 454–462.

5 5 Jabeen, N., Majid, I., and Nayik, G.A. (2015). Bioplastics and food packaging: a review. Cogent Food & Agriculture 1 (1): 1117749.

6 6 Williams, C.K. and Hillmyer, M.A. (2008). Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polymer Reviews 48 (1): 1–10.

7 7 Xie, Y., Kohls, D., Noda, I. et al. (2009). Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) nanocomposites with optimal mechanical properties. Polymer 50 (19): 4656–4670.

8 8 Payne, J., McKeown, P., and Jones, M.D. (2019). A circular economy approach to plastic waste. Polymer Degradation and Stability 165: 170–181.

9 9 Tharanathan, R.N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology 14 (3): 71–78.

10 10 Ashter, S.A. (ed.) (2016). In Plastics Design Library, Introduction to Bioplastics Engineering, 81–151. William Andrew Publishing.

11 11 Laycock, B., Nikolić, M., Colwell, J.M. et al. (2017). Lifetime prediction of biodegradable polymers. Progress in Polymer Science 71: 144–189.

12 12 Thakur, S., Chaudhary, J., Sharma, B. et al. (2018). Sustainability of bioplastics: opportunities and challenges. Current Opinion in Green and Sustainable Chemistry 13: 68–75.

13 13 Tsang, Y.F., Kumar, V., Samadar, P. et al. (2019). Production of bioplastic through food waste valorization. Environment International 127: 625–644.

14 14 Balan, V. (2014). Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnology 2014: 463074–463074.

15 15 Braunegg, G., Lefebvre, G., and Genser, K.F. (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. Journal of Biotechnology 65 (2): 127–161.

16 16 Cui, S., Borgemenke, J., Liu, Z., and Li, Y. (2019). Recent advances of “soft” bio‐polycarbonate plastics from carbon dioxide and renewable bio‐feedstocks via straightforward and innovative routes. Journal of CO2 Utilization 34: 40–52.

17 17 Höfer, R. and Selig, M. (2012). Green chemistry and green. Polymer Chemistry 10: 5–13.

18 18 Hatti‐Kaul, R., Nilsson, L.J., Zhang, B. et al. (2019). Designing biobased recyclable polymers for plastics. Trends in Biotechnology 38: 50–67.

19 19 Sorrentino, A., Gorrasi, G., and Vittoria, V. (2007). Potential perspectives of bio‐nanocomposites for food packaging applications. Trends in Food Science and Technology 18 (2): 84–95.

20 20 Rhim, J.‐W., Park, H.‐M., and Ha, C.‐S. (2013). Bio‐nanocomposites for food packaging applications. Progress in Polymer Science 38 (10): 1629–1652.

21 21 Vink, E.T.H., Glassner, D.A., Kolstad, J.J. et al. (2007). The eco‐profiles for current and near‐future NatureWorks® polylactide (PLA) production. Industrial Biotechnology 3 (1): 58–81.

22 22 Vroman, I. and Tighzert, L. (2009). Biodegradable polymers. Materials 2 (2): 307–344.

23 23 Schué, F. (2000). Biopolymers from renewable resources. Edited by D.L. Kaplan Springer‐Verlag, Heidelberg, 1998. Pp 417, Price DM278.00 ISBN 3‐540‐63567‐X. Polymer International 49 (5): 472–473.

24 24 Auras, R., Harte, B., and Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience 4 (9): 835–864.

25 25 Jamshidian, M., Tehrany, E.A., Imran, M. et al. (2010). Poly‐lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety 9 (5): 552–571.

26 26 Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment 9 (2): 63–84.

27 27 Conn, R.E., Kolstad, J.J., Borzelleca, J.F. et al. (1995). Safety assessment of polylactide (PLA) for use as a food‐contact polymer. Food and Chemical Toxicology 33 (4): 273–283.

28 28 Harada, M., Ohya, T., Iida, K. et al. (2007). Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. Journal of Applied Polymer Science 106 (3): 1813–1820.

29 29 Babu, R.P., O'Connor, K., and Seeram, R. (2013). Current progress on bio‐based polymers and their future trends. Progress in Biomaterials 2 (1): 8.

30 30 Auras, R., Lim, L.T., Selke, S.E.M., and Tsuji, H. (2010). Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. Wiley, ISBN: 978‐0‐470‐29366‐9.

31 31 Relinque, J.J., de León, A.S., Hernández‐Saz, J. et al. (2019). Development of surface‐coated polylactic acid/polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers 11 (3).

32 32 Rocca‐Smith, J.R., Pasquarelli, R., Lagorce‐Tachon, A. et al. (2019). Toward sustainable PLA‐based multilayer complexes with improved barrier properties. ACS Sustainable Chemistry & Engineering 7 (4): 3759–3771.

33 33 Torres‐Giner, S., Montanes, N., Fombuena, V. et al. (2018). Preparation and characterization of compression‐molded green composite sheets made of poly(3‐hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology 37 (5): 1305–1315.

34 34 Mutlu, G., Calamak, S., Ulubayram, K., and Guven, E. (2018). Curcumin‐loaded electrospun PHBV nanofibers as potential wound‐dressing material. Journal of Drug Delivery Science and Technology 43: 185–193.

35 35 Reddy, C.S.K., Ghai, R., Rashmi, and Kalia, V.C. (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology 87 (2): 137–146.

36 36 Choi, J.‐I. and Lee, S.Y. (1997). Process analysis and economic evaluation for poly(3‐hydroxybutyrate) production by fermentation. Bioprocess Engineering 17 (6): 335–342.

37 37 Yeo, J.C.C., Muiruri, J.K., Thitsartarn, W. et al. (2018). Recent advances in the development of biodegradable PHB‐based toughening materials: approaches, advantages and applications. Materials Science and Engineering: C 92: 1092–1116.

38 38 McChalicher, C.W.J. and Srienc, F. (2007). Investigating the structure–property relationship of bacterial PHA block copolymers. Journal of Biotechnology 132 (3): 296–302.

39 39 Keshavarz, T. and Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology 13 (3): 321–326.

40 40 Khosravi‐Darani, K. and Bucci, D.Z. (2015). Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chemical and Biochemical Engineering Quarterly 29 (2): 275–285.

41 41 Requena, R., Vargas, M., and Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal 92: 185–193.

42 42 Torres‐Giner, S., Hilliou, L., Melendez‐Rodriguez, B. et al. (2018). Melt processability, characterization, and antibacterial activity of compression‐molded green composite sheets made of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life 17: 39–49.

43 43 Herrera, R., Franco, L., Rodríguez‐Galán, A., and Puiggalí, J. (2002). Characterization and degradation behavior of poly(butylene adipate‐co‐terephthalate)s. Journal of Polymer Science Part A: Polymer Chemistry 40 (23): 4141–4157.

44 44 Li, G., Shankar, S., Rhim, J.‐W., and Oh, B.‐Y. (2015). Effects of preparation method on properties of poly(butylene adipate‐co‐terephthalate) films. Food Science and Biotechnology 24 (5): 1679–1685.

45 45 Witt, U., Einig, T., Yamamoto, M. et al. (2001). Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44 (2): 289–299.

46 46 Fukushima, K., Wu, M.‐H., Bocchini, S. et al. (2012). PBAT based nanocomposites for medical and industrial applications. Materials Science and Engineering: C 32 (6): 1331–1351.

47 47 Xing, Q., Ruch, D., Dubois, P. et al. (2017). Biodegradable and high‐performance poly(butylene adipate‐co‐terephthalate)–lignin UV‐blocking films. ACS Sustainable Chemistry & Engineering 5 (11): 10342–10351.

48 48 Wang, X., Peng, S., Chen, H. et al. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high‐toughness PLA/PBAT blends by in‐situ reactive compatibilization. Composites Part B: Engineering 173: 107028.

49 49 Someya, Y., Sugahara, Y., and Shibata, M. (2005). Nanocomposites based on poly(butylene adipate‐co‐terephthalate) and montmorillonite. Journal of Applied Polymer Science 95 (2): 386–392.

50 50 Chivrac, F., Kadlecova, Z., Pollet, E., and Avérous, L. (2006). Aromatic copolyester‐based nano‐biocomposites: elaboration, structural characterization and properties. Journal of Polymers and the Environment 14: 393–401.

51 51 Mondal, D., Bhowmick, B., Mollick, M.M.R. et al. (2014). Antimicrobial activity and biodegradation behavior of poly(butylene adipate‐co‐terephthalate)/clay nanocomposites. Journal of Applied Polymer Science 131 (7): 40079.

52 52 Al‐Itry, R., Lamnawar, K., and Maazouz, A. (2014). Reactive extrusion of PLA, PBAT with a multi‐functional epoxide: physico‐chemical and rheological properties. European Polymer Journal 58: 90–102.

53 53 Zehetmeyer, G., Meira, S.M.M., Scheibel, J.M. et al. (2016). Influence of melt processing on biodegradable nisin‐PBAT films intended for active food packaging applications. Journal of Applied Polymer Science 133 (13).

54 54 Sousa, G.M., Soares Júnior, M.S., and Yamashita, F. (2013). Active biodegradable films produced with blends of rice flour and poly(butylene adipate co‐terephthalate): effect of potassium sorbate on film characteristics. Materials Science and Engineering: C 33 (6): 3153–3159.

55 55 Succinity. 2016. Biobased Polybutylene Succinate (PBS) ‐ an attractive polymer for biopolymer compounds.

56 56 Xu, J. and Guo, B.‐H. (2010). Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnology Journal 5 (11): 1149–1163.

57 57 Doug, S. (2010). Bioplastics: Technologies and Global Markets. BCC research reports PLS050A.

58 58 Ravenstijn, J. (2010). The State‐of‐the‐Art on Bioplastics: Products, Markets, Trends and Technologies. Polymedia.

59 59 Bajpai, P. (2019). Biobased Polymers: Properties and Applications in Packaging. Elsevier Science.

60 60 Vytejčková, S., Vápenka, L., Hradecký, J. et al. (2017). Testing of polybutylene succinate based films for poultry meat packaging. Polymer Testing 60: 357–364.

61 61 Jacquel, N., Freyermouth, F., Fenouillot, F. et al. (2011). Synthesis and properties of poly(butylene succinate): efficiency of different transesterification catalysts. Journal of Polymer Science Part A: Polymer Chemistry 49 (24): 5301–5312.

62 62 Eslami, H. and Kamal, M. (2013). Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)‐co‐adipate] binary blends and poly(lactic acid)/poly[(butylene succinate)‐co‐adipate]/clay ternary nanocomposites. Journal of Applied Polymer Science 127: 2290–2306.

63 63 Liu, L., Yu, J., Cheng, L., and Qu, W. (2009). Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing 40 (5): 669–674.

64 64 Liu, L., Yu, J., Cheng, L., and Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability 94 (1): 90–94.

65 65 Zhao, P., Liu, W., Wu, Q., and Ren, J. (2010). Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. Journal of Nanomaterials 2010: 8.

66 66 Xu, J. and Guo, B. (2009). Microbial succinic acid, its polymer poly(butylene succinate), and applications. In: Plastics from Bacteria. Microbiology Monographs, vol. 14 (ed. G.Q. Chen), 347–388. Berlin, Heidelberg: Springer.

67 67 Ayu, R.S., Khalina, A., Harmaen, A.S. et al. (2018). Effect of modified tapioca starch on mechanical, thermal, and morphological properties of PBS blends for food packaging. Polymers 10 (11): 1187.

68 68 Kim, H.‐S., Kim, H.‐J., Lee, J.‐W., and Choi, I.‐G. (2006). Biodegradability of bio‐flour filled biodegradable poly(butylene succinate) bio‐composites in natural and compost soil. Polymer Degradation and Stability 91 (5): 1117–1127.

69 69 Chen, G., Li, S., Jiao, F., and Yuan, Q. (2007). Catalytic dehydration of bioethanol to ethylene over TiO2/γ‐Al2O3 catalysts in microchannel reactors. Catalysis Today 125 (1): 111–119.

70 70 Torres‐Giner, S., Torres, A., Ferrándiz, M. et al. (2017). Antimicrobial activity of metal cation‐exchanged zeolites and their evaluation on injection‐molded pieces of bio‐based high‐density polyethylene. Journal of Food Safety 37 (4): e12348.

71 71 Braskem. (2014) I'm green polyethylene. Innovation and differentiation for your product.

72 72 De Castro Morschbacker, A.L. (2010). A method for the production of one or more olefins, an olefin, and a polymer. US 2010/0069691A1, 18 March 2010.

73 73 Koopmans, R.J. (2013). Polyolefin‐based plastics from biomass‐derived monomers. In: Bio‐Based Plastics (ed. S. Kabasci), 295–310. Chichester: Wiley.

74 74 Huang, Y.M.L.H., Huang, X.L., Hu, Y.C., and Hu, Y. (2008). Advances of bio‐ethylene. Chinese Journal of Bioprocess Engineering 6: 1–6.

75 75 LyondellBasell. (2019) Circulen and Circulen Plus.

76 76 Robertson, G.L. (2015). Trends in Food Packaging. The Journal of the Instutite of Food Science & Technology.

77 77 Smith, P.B. (2015). Bio‐based sources for terephthalic acid. In: Green Polymer Chemistry: Biobased Materials and Biocatalysis, vol. 1192 (eds. H.N. Cheng, R.A. Gross and P.B. Smith), 453–469. American Chemical Society.

78 78 Tsusho, T. (2013). Toyota Tsusho Expanding its New Plant‐Derived Plastic Brand Globio. https://www.toyota-tsusho.com/english/press/detail/130326_001840.html#:∼:text=Mineral%20Water%20bottles%2D-,Toyota%20Tsusho%20Expanding%20its%20New%20Plant%2DDerived%20Plastic%20Brand%20GLOBIO,Suntory%20Natural%20Mineral%20Water%20bottles%2D&text=Since%20Bio%2DPET%20is%20made,the%20atmosphere%20even%20when%20burned. (accessed 09 September 2019).

79 79 SCG Chemicals. (n.d.) The green plastic “Bio‐PET?”". https://www.scgchemicals.com/en/news-media/feature-story/detail/9 (accessed 09 September 2019).

80 80 Feldman, R.M.R.G.U., Urano, J., Meinhold, P. et al. (2011). Yeast organism producing isobutanol at a high yield. US Patent 8455239, issued 13 September, 2011.

81 81 Peters, M.T.J.D., Jenni, M., Manzer, L.E., and Hendon, D.E. (2010). Integrated process to selectively convert renewable isobutanol to p‐xylene. US 12/899285, filed October 6, 2010.

82 82 The Coca‐Cola Company (2015). Great things come in innovative packaging: an introduction to PlantBottle™ packaging.

83 83 Siracusa, V. and Rosa, M.D. (2018). Sustainable packaging. In: Sustainable Food Systems from Agriculture to Industry, Chapter 8 (ed. C.M. Galanakis), 275–307. Academic Press.

84 84 Pellis, A., Haernvall, K., Pichler, C.M. et al. (2016). Enzymatic hydrolysis of poly(ethylene furanoate). Journal of Biotechnology 235: 47–53.

85 85 Weinberger, S., Canadell, J., Quartinello, F. et al. (2017). Enzymatic degradation of poly(ethylene 2,5‐furanoate) powders and amorphous films. Catalysts 7 (11): 318.

86 86 Rosenboom, J.‐G., Hohl, D.K., Fleckenstein, P. et al. (2018). Bottle‐grade polyethylene furanoate from ring‐opening polymerisation of cyclic oligomers. Nature Communications 9 (1): 2701.

87 87 Kasmi, N., Papageorgiou, G.Z., Achilias, D.S., and Bikiaris, D.N. (2018). Solid‐state polymerization of poly(ethylene Furanoate) biobased polyester, II: an efficient and facile method to synthesize high molecular weight polyester appropriate for food packaging applications. Polymers 10 (5): 471.

88 88 Avantium. (n.d.) FDCA‐From plant based materials to FDCA and PEF. https://www.avantium.com/yxy/products-applications/ (accessed 09 September 2019).

89 89 Cruz‐Izquierdo, Á., van den Broek, L.A.M., Serra, J.L. et al. (2015). Lipase‐catalyzed synthesis of oligoesters of 2,5‐furandicarboxylic acid with aliphatic diols. Pure and Applied Chemistry 87 (1): 59–69.

90 90 Jiang, Y., Woortman, A.J.J., Alberda van Ekenstein, G.O.R. et al. (2014). Enzymatic synthesis of biobased polyesters using 2,5‐bis(hydroxymethyl)furan as the building block. Biomacromolecules 15 (7): 2482–2493.

91 91 Rudnik, E. (2013). Compostable polymer properties and packaging applications. In: Plastic Films in Food Packaging, Chapter 13 (ed. S. Ebnesajjad), 217–248. Oxford: William Andrew Publishing.

92 92 Pawar, P.A. and Purwar, A.H. (2013). Biodegradable polymers in food packaging. American Jorunal of Engineering Research 2 (5): 151–164.

93 93 García Ibarra, V., Sendón, R., and Rodríguez‐Bernaldo de Quirós, A. (2016). Antimicrobial food packaging based on biodegradable materials. In: Antimicrobial Food Packaging, Chapter 29 (ed. J. Barros‐Velázquez), 363–384. San Diego, CA: Academic Press.

94 94 Khalid, S., Yu, L., Feng, M. et al. (2018). Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life 18: 71–79.

95 95 Chan, C.M., Vandi, L.‐J., Pratt, S. et al. (2018). Composites of wood and biodegradable thermoplastics: a review. Polymer Reviews 58 (3): 444–494.

96 96 Khan, B.M., Niazi, B.K., Samin, G., and Jahan, Z. (2017). Thermoplastic starch: a possible biodegradable food packaging material—a review. Journal of Food Process Engineering 40 (3): e12447.

97 97 Li, H., Qi, Y., Zhao, Y. et al. (2019). Starch and its derivatives for paper coatings: a review. Progress in Organic Coatings 135: 213–227.

98 98 Mohanty, A.K., Misra, M., and Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering 276–277 (1): 1–24.

99 99 Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers 122: 456–480.

100 100 Forssell, P.M., Mikkilä, J.M., Moates, G.K., and Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch‐glycerol‐water mixtures, a model for thermoplastic starch. Carbohydrate Polymers 34 (4): 275–282.

101 101 Gaudin, S., Lourdin, D., Le Botlan, D. et al. (1999). Plasticisation and mobility in starch‐sorbitol films. Journal of Cereal Science 29 (3): 273–284.

102 102 Ma, X. and Yu, J. (2004). The plastcizers containing amide groups for thermoplastic starch. Carbohydrate Polymers 57 (2): 197–203.

103 103 Nakamura, S. and Tobolsky, A.V. (1967). Viscoelastic properties of plasticized amylose films. Journal of Applied Polymer Science 11 (8): 1371–1386.

104 104 Kalichevsky, M.T., Blanshard, J.M.V., and Tokargzuk, P.F. (1993). Effect of water content and sugars on the glass transition of casein and sodium caseinate. International Journal of Food Science & Technology 28 (2): 139–151.

105 105 Kaseem, M., Hamad, K., and Deri, F. (2012). Thermoplastic starch blends: a review of recent works. Polymer Science, Series A 54 (2): 165–176.

106 106 Wang, Z.‐F., Peng, Z., Li, S.‐D. et al. (2009). The impact of esterification on the properties of starch/natural rubber composite. Composites Science and Technology 69 (11): 1797–1803.

107 107 Liu, H., Xie, F., Yu, L. et al. (2009). Thermal processing of starch‐based polymers. Progress in Polymer Science 34 (12): 1348–1368.

108 108 Dong, Y., Novo, D.C., Mosquera‐Giraldo, L.I. et al. (2019). Conjugation of bile esters to cellulose by olefin cross‐metathesis: a strategy for accessing complex polysaccharide structures. Carbohydrate Polymers 221: 37–47.

109 109 Chavan, R.B., Rathi, S., Jyothi, V.G.S.S., and Shastri, N.R. (2019). Cellulose based polymers in development of amorphous solid dispersions. Asian Journal of Pharmaceutical Sciences 14 (3): 248–264.

110 110 Petersen, K., Væggemose Nielsen, P., Bertelsen, G. et al. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology 10 (2): 52–68.

111 111 Vom Stein, T., Grande, P., Sibilla, F. et al. (2010). Salt‐assisted organic‐acid‐catalyzed depolymerization of cellulose. Green Chemistry 12 (10): 1844–1849.

112 112 Andrade, R., Skurtys, O., and Osorio, F. (2015). Drop impact of gelatin coating formulated with cellulose nanofibers on banana and eggplant epicarps. LWT Food Science and Technology 61 (2): 422–429.

113 113 Azevedo, V.M., Silva, E.K., Gonçalves Pereira, C.F. et al. (2015). Whey protein isolate biodegradable films: influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocolloids 43: 252–258.

114 114 Ahmad, M., Benjakul, S., Sumpavapol, P., and Nirmal, N.P. (2012). Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil. International Journal of Food Microbiology 155 (3): 171–178.

115 115 Martucci, J.F. and Ruseckaite, R.A. (2010). Biodegradable three‐layer film derived from bovine gelatin. Journal of Food Engineering 99 (3): 377–383.

116 116 Tongnuanchan, P., Benjakul, S., and Prodpran, T. (2014). Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids 41: 33–43.

117 117 Martucci, J.F., Gende, L.B., Neira, L.M., and Ruseckaite, R.A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops and Products 71: 205–213.

118 118 Fakhouri, F.M., Costa, D., Yamashita, F. et al. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers 95 (2): 681–689.

119 119 Gómez‐Estaca, J., Gómez‐Guillén, M.C., Fernández‐Martín, F., and Montero, P. (2011). Effects of gelatin origin, bovine‐hide and tuna‐skin, on the properties of compound gelatin–chitosan films. Food Hydrocolloids 25 (6): 1461–1469.

120 120 Yilmaz, M.T., Kesmen, Z., Baykal, B. et al. (2013). A novel method to differentiate bovine and porcine gelatins in food products: nanoUPLC‐ESI‐Q‐TOF‐MSE based data independent acquisition technique to detect marker peptides in gelatin. Food Chemistry 141 (3): 2450–2458.

121 121 Nur Azira, T., Man, Y.B.C., Raja Mohd Hafidz, R.N. et al. (2014). Use of principal component analysis for differentiation of gelatine sources based on polypeptide molecular weights. Food Chemistry 151: 286–292.

122 122 Andreuccetti, C., Carvalho, R.A., Galicia‐García, T. et al. (2011). Effect of surfactants on the functional properties of gelatin‐based edible films. Journal of Food Engineering 103 (2): 129–136.

123 123 Díaz, P., Arratia, C., Vásquez, C. et al. (2011). Effect of glycerol on water sorption of bovine gelatin films in the glassy state. Procedia Food Science 1: 267–274.

124 124 Sinha Ray, S. and Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in Materials Science 50 (8): 962–1079.

125 125 Liao, L., Zhang, F.‐L., Lin, W.‐J. et al. (2019). Gluten–starch interactions in wheat gluten during carboxylic acid deamidation upon hydrothermal treatment. Food Chemistry 283: 111–122.

126 126 Pallos, F.M., Robertson, G.H., Pavlath, A.E., and Orts, W.J. (2006). Thermoformed wheat gluten biopolymers. Journal of Agricultural and Food Chemistry 54 (2): 349–352.

127 127 Nataraj, D., Sakkara, S., Hn, M., and Reddy, N. (2018). Properties and applications of citric acid crosslinked banana fibre‐wheat gluten films. Industrial Crops and Products 124: 265–272.

128 128 Zubeldía, F., Ansorena, M.R., and Marcovich, N.E. (2015). Wheat gluten films obtained by compression molding. Polymer Testing 43: 68–77.

129 129 Bootklad, M., Chantarak, S., and Kaewtatip, K. (2016). Novel biocomposites based on wheat gluten and rubber wood sawdust. Journal of Applied Polymer Science 133 (30).

130 130 Tuntachon, S., Sukolrat, A., Numnuam, A., and Kaewtatip, K. (2019). Effect of kaolin content and sonication on the properties of wheat gluten composites. Powder Technology 351: 66–70.

131 131 Chen, L., Reddy, N., Wu, X., and Yang, Y. (2012). Thermoplastic films from wheat proteins. Industrial Crops and Products 35 (1): 70–76.

132 132 Guilbert, S., Gontard, N., Morel, M.H. et al. (2002). Formation and properties of wheat gluten films and coatings. In: Protein‐Based Films and Coatings (ed. A. Gennadios), 69–122. CRC Press.

133 133 Cho, S.W., Gällstedt, M., Johansson, E., and Hedenqvist, M.S. (2011). Injection‐molded nanocomposites and materials based on wheat gluten. International Journal of Biological Macromolecules 48 (1): 146–152.

134 134 Zárate‐Ramírez, L.S., Romero, A., Martínez, I. et al. (2014). Effect of aldehydes on thermomechanical properties of gluten‐based bioplastics. Food and Bioproducts Processing 92 (1): 20–29.

135 135 Angellier‐Coussy, H., Torres‐Giner, S., Morel, M.H. et al. (2008). Functional properties of thermoformed wheat gluten/montmorillonite materials with respect to formulation and processing conditions. Journal of Applied Polymer Science 107 (1): 487–496.

136 136 Koshy, R.R., Mary, S.K., Thomas, S., and Pothan, L.A. (2015). Environment friendly green composites based on soy protein isolate – a review. Food Hydrocolloids 50: 174–192.

137 137 Rani, S. and Kumar, R. (2019). A review on material and antimicrobial properties of soy protein isolate film. Journal of Polymers and the Environment 27 (8): 1613–1628.

138 138 Wihodo, M. and Moraru, C.I. (2013). Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. Journal of Food Engineering 114 (3): 292–302.

139 139 Kasaai, M.R. (2018). Zein and zein‐based nano‐materials for food and nutrition applications: a review. Trends in Food Science & Technology 79: 184–197.

140 140 Shukla, R. and Cheryan, M. (2001). Zein: the industrial protein from corn. Industrial Crops and Products 13 (3): 171–192.

141 141 Sun, H., Shao, X., Jiang, R. et al. (2018). Mechanical and barrier properties of corn distarch phosphate‐zein bilayer films by thermocompression. International Journal of Biological Macromolecules 118: 2076–2081.

142 142 Anderson, T.J. and Lamsal, B.P. (2011). REVIEW: zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chemistry 88 (2): 159–173.

143 143 Spasojević, L., Katona, J., Bučko, S. et al. (2019). Edible water barrier films prepared from aqueous dispersions of zein nanoparticles. LWT 109: 350–358.

144 144 Altan, A., Aytac, Z., and Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids 81: 48–59.

145 145 Chen, X., Cui, F., Zi, H. et al. (2019). Development and characterization of a hydroxypropyl starch/zein bilayer edible film. International Journal of Biological Macromolecules 145: 1175–1182.

146 146 Qian, J., Ma, J., Su, J. et al. (2016). PHBV‐based ternary composite by intermixing of magnesium calcium phosphate nanoparticles and zein: in vitro bioactivity, degradability and cytocompatibility. European Polymer Journal 75: 291–302.

147 147 Kinsella, J.E. and Morr, C.V. (1984). Milk proteins: physicochemical and functional properties. Critical Reviews in Food Science and Nutrition 21 (3): 197–262.

148 148 Rehan, F., Ahemad, N., and Gupta, M. (2019). Casein nanomicelle as an emerging biomaterial—a comprehensive review. Colloids and Surfaces B: Biointerfaces 179: 280–292.

149 149 Picchio, M.L., Linck, Y.G., Monti, G.A. et al. (2018). Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocolloids 84: 424–434.

150 150 Belyamani, I., Prochazka, F., and Assezat, G. (2014). Production and characterization of sodium caseinate edible films made by blown‐film extrusion. Journal of Food Engineering 121: 39–47.

151 151 McHugh, T.H., Aujard, J.F., and Krochta, J.M. (1994). Plasticized whey protein edible films: water vapor permeability properties. Journal of Food Science 59 (2): 416–419.

152 152 Kokoszka, S., Debeaufort, F., Lenart, A., and Voilley, A. (2010). Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. International Dairy Journal 20 (1): 53–60.

153 153 Ramos, Ó.L., Silva, S.I., Soares, J.C. et al. (2012). Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Research International 45 (1): 351–361.

154 154 Krochta, J.M., De Mulder‐Johnson, C., and Institute of Food Technologists. Expert Panel on Food Safety and Nutrition (1997). Edible and biodegradable polymer films: challenges and opportunities. 51 (2): 61–74.

155 155 Pérez‐Gago, M.B. and Krochta, J.M. (2002). Formation and properties of whey protein films and coatings. In: Protein‐Based Films and Coatings (ed. A. Gennadios), 159–180. CRC Press.

Sustainable Food Packaging Technology

Подняться наверх