Читать книгу Internet of Things in Business Transformation - Группа авторов - Страница 21

References

Оглавление

1. “In an energy-hungry world, natural gas gaining the most”, Amy Harder. Axio.com, June 2019.

2. Pydata 2018 Video (Youtube), Hot Water Leak Detection Using Variational Autoencoder Model—Jay Kim.

3. Na, L. and Yanyan, Z., Application of Wavelet Packet and Support Vector Machine to Leak Detection in Pipeline. 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 2008.

4. Ibitoye, Olakunle & Shafiq, Omair & Matrawy, Ashraf. (2019). A Convolutional Neural Network Based Solution for Pipeline Leak Detection.

5. Pipeline Stats in India, https://community.data.gov.in/length-of-natural-gaspipelines-in-india-from-2010-to-2017/.

6. Pipeline—data as per plot, https://www.indexmundi.com/energy/?product=gasoline&graph=consumption&display=rank.

7. Where are pipelines located?, https://pipeline101.org/Where-Are-Pipelines-Located.

8. Lim, K., Wong, L., Chiu, W.K., Kodikara, J., Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes. Struct. Control Hlth., 23, 2, 303–314, 2015.

9. Gamboa-Medina, M.M., Ribeiro Reis, L.F., Capobianco Guido, R., Feature extraction in pressure signals for leak detection in water networks. Procedia Eng., 70, 688–697, 2014.

10. US Oil and Gas Pipeline Stats, https://www.bts.gov/content/us-oil-and-gaspipeline-mileage.

11. Definition of IIoT, https://internetofthingsagenda.techtarget.com/definition/Industrial-Internet-of-Things-IIoT.

12. Bolotina, I., Borikov, V., Ivanova, V., Mertins, K., Uchaikin, S., Application of phased antenna arrays for pipeline leak detection. J. Petrol. Sci. Eng., 161, 497–505, 2018.

13. Adnan, N.F. et al., Leak detection in gas pipeline by acoustic and signal processing—A review. IOP Conf. Ser.: Mater. Sci. Eng., 100, 012013, 2015.

14. Wang, L., Guo, N., Jin, C., Yu, C., Tam, H., Lu, C., BOTDA system using artificial neural network. 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, pp. 1–1, 2017.

15. Shibata, A., Konishi, M., Abe, Y., Hasegawa, R., Watanabe, M., Kamijo, H., Neuro based classification of gas leakage sounds in pipeline. 2009 International Conference on Networking, Sensing and Control, 2009.

16. Feng, W.-Q., Yin, J.-H., Borana, L., Qin, J.-Q., Wu, P.-C., Yang, J.-L., A network theory for BOTDA measurement of deformations of geotechnical structures and error analysis. Measurement, 146, 618–627, 2019.

17. Three reasons why Oil will continue to run the world, https://www.forbes.com/sites/judeclemente/2015/04/19/three-reasons-oil-will-continue-to-run-the-world/.

18. Chen, Y., Kuo, T., Kao, W., Tsai, J., Chen, W., Fan, K., An improved method of soil-gas sampling for pipeline leak detection: Flow model analysis and laboratory test. J. Nat. Gas Sci. Eng., 42, 226–231, 2017.

19. Chen, H., Ye, H., Chen, L.V., Su, H., Application of support vector machine learning to leak detection and location in pipelines. Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510), Como, Vol. 3, pp. 2273–2277, 2004.

20. Thorley, A.R.D., Fluid Transients in Pipeline Systems, D&L George Limited, pp. 126–129, 1991.

21. Tian, C.H., Yan, J.C., Huang, J., Wang, Y., Kim, D.-S., Yi, T., Negative pressure wave based pipeline Leak Detection: Challenges and algorithms. Proceedings of 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, 2012.

22. Hou, Q. and Zhu, W., An EKF-Based Method and Experimental Study for Small Leakage Detection and Location in Natural Gas Pipelines. Appl. Sci., 9, 15, 3193, 2019.

23. Peng, Z., Wang, J., Han, X., A study of negative pressure wave method based on Haar wavelet transform in ship piping leakage detection system. 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, Wuhan, pp. 111–113, 2011.

1 Email: daspragyaditya@gmail.com

Internet of Things in Business Transformation

Подняться наверх