Читать книгу Phytomicrobiome Interactions and Sustainable Agriculture - Группа авторов - Страница 19
References
Оглавление1 Abdel Lateif, K., Bogus, D., and Hocher, V. (2012). The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal. Behav. 7 (6): 636–641.
2 Ahmad, S., Veyrat, N., Gordon Weeks, R. et al. (2005). Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol. 157 (1): 317–327. https://doi.org/10.1104/pp.111.180224.
3 Asao, T., Hasegawa, K., Sueda, Y. et al. (2003). Autotoxicity of root exudates from taro. Sci. Hortic. 97: 389–396. https://doi.org/10.1016/S0304‐4238(02)00197‐8.
4 Badri, D.V. and Vivanco, J.M. (2009). Regulation and function of root excudates. Plant Cell Environ. 32: 666–681.
5 Badri, D.V., Loyola‐Vargas, V.M., Broeckling, C.D. et al. (2008). Altered profile of secondary metabolites in the root exudates of Arabidopsis. Plant Physiol. 146 (2): 762–771.
6 Bais, H.P., Walker, T.S., Schweizer, H.P., and Vivanco, J.M. (2002). Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of sweet basil (Ocimumbasilicum L.). Plant Physiol. Biochem. 40: 983–995.
7 Bais, H.P., Prithiviraj, B., Jha, A.K. et al. (2005). Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434: 217–221.
8 Bais, H.P., Weir, T.L., Perry, L.G. et al. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57: 233–266.
9 Boldt‐Burisch, K., Bernd, U., Annenaeth, M., and Fhüttl, R. (2019). Root exudation of organic acids of herbaceous pioneer plants and their growth in sterile and non‐sterile nutrient‐poor, sandy soils from post‐mining sites. Pedosphere 29 (1): 34–44.
10 Brigham, L.A., Michaels, P.J., and Flores, H.E. (1999). Cell‐specific production and antimicrobial activity of naphthoquinones in roots of Lithospermumerythrorhizon. Plant Physiol. 119: 417–428.
11 Caetano‐Anolles, G., Crist‐Estes, D.K., and Bauer, D.W. (1988). Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170: 3164–3169.
12 Canarini, A., Kaiser, C., Merchant, A. et al. (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10: 157. https://doi.org/10.3389/fpls.2019.00157.
13 Carlsen, S.C.K., Pedersen, H.A., Spliid, N.H., and Fomsgaard, I.S. (2012). Fate in soil of flavonoids released from white clover (Trifoliumrepens L.). Appl. Environ. Soil Sci. 2012: 1–10.
14 Carvalhais, L.C., Dennis, P.G., Fedoseyenko, D. et al. (2010). Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 174: 3–11.
15 Carvalhais, L.C., Dennis, P.G., Badri, D.V. et al. (2015). Linking jasmonic acid signalling, root excudates, and rhizosphere microbiomes. Mol. Plant Microb. Interact. 28 (9): 1049–1058.
16 Chaparro, J.M., Badri, D.V., Bakker, M.G. et al. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8 (2): e55731. https://doi.org/10.1371/journal.pone.0055731.
17 Dakora, F.D. (2000). Commonality of root nodulation signals and nitrogen assimilation in tropical grain legumes belonging to the tribe Phaseoleae. Aust. J. Plant Physiol. 27: 885–892.
18 De Weert, S., Vermeiren, H., Mulders, I.H.M. et al. (2002). Flagella‐driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe Interact. 15 (11): 1173–1180.
19 Emily, M., Maureen, M., Carlos, M., and Maria, D.R. (2013). Development and application of crop exudates specific aptamers. J. Biomol. Struct. Dyn. 31 (sup1): 89–89.
20 Gargallo‐Garriga, A., Preece, C., Sardans, J. et al. (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8: 12696. https://doi.org/10.1038/s41598‐018‐30150‐0.
21 Gfeller, A., Glauser, G., Etter, C. et al. (2018). Fagopyrum esculentum alters its root exudation after Amaranthus retroflexus recognition and suppresses weed growth. Front. Plant Sci. 9: 50. https://doi.org/10.3389/fpls.2018.00050.
22 Gifford, I., Battenberg, K., Vaniya, A. et al. (2018). Distinctive patterns of Flavonoid biosynthesis in roots and nodules of Datiscaglomerata and Medicago spp. revealed by metabolomic and gene expression profiles. Front. Plant Sci. 9: 1463. https://doi.org/10.3389/fpls.2018.01463.
23 Gomez‐Roldan, V., Soraya, F., Philip, B.B. et al. (2008). Strigolactone inhibition of shoot branching. Nature 455: 189–194.
24 Guo, J., McCulley, R.L., and McNear, D.H.J. (2015). Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Front. Plant Sci. 6: 183. https://doi.org/10.3389/fpls.2015.00183.
25 Hoysted, G.A., Bell, C.A., Lilley, C.J., and Urwin, P.E. (2018). Aphid colonization affects potato root exudate composition and the hatching of a soil borne pathogen. Front. Plant Sci. 9: 1278. https://doi.org/10.3389/fpls.2018.01278.
26 Huang, X.F., Chaparro, J.M., Reardon, K.F. et al. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92: 267–275.
27 Jones, D.L. and Darrah, P.R. (1995). Influx and efflux of organic acids across the soil root interface of Zea mays L. and its implications in rhizosphere C flow. Plant and Soil 173: 103–109.
28 Karlowsky, S., Augusti, A., Ingrisch, J. et al. (2018). Drought‐induced accumulation of root exudates supports post‐drought recovery of microbes in mountain grassland. Front. Plant Sci. 9: 1593. https://doi.org/10.3389/fpls.2018.01593.
29 Kidd, P.S., Llugany, M., Poschenrieder, C. et al. (2001). The role of root exudates in aluminium resistance and silicon‐induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52: 1339–1352.
30 Kuijken, R.C., van Eeuwijk, F.A., Marcelis, L.F., and Bouwmeester, H.J. (2015). Root phenotyping: from component trait in the lab to breeding. J. Exp. Bot. 66 (18): 5389–5401.
31 Lagrange, H., Jay‐Allgmand, C., and Lapeyrie, F. (2001). Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol. 149: 349–355.
32 Lagunas, B., Schäfer, P., and Gifford, M.L. (2015). Housing helpful invaders: the evolutionary and molecular architecture underlying plant root‐mutualist microbe interactions. J. Exp. Bot. 66 (8): 2177–2186.
33 Lambert, M.R. (2015). Clover root exudate produces male‐biased sex ratios and accelerates male metamorphic timing in wood frogs. R. Soc. Open Sci. 2 (12): 1–8. https://doi.org/10.1098/rsos.150433.
34 Lareen, A., Burton, F., and Schafer, P. (2016). Plant root‐microbe communication in shaping root microbiomes. Plant Mol. Biol. 90 (6): 575–587.
35 Lima, L.D.S., Olivares, F.L., de Oliveira, R.R. et al. (2014). Root exudate profiling of maize seedlings inoculated with Herbaspirillumseropedicae and humic acids. Chem. Biol. Technol. Agric. 23 (1): 1–18.
36 Lopez‐Farfan, D., Reyes‐Darias, J.A., Matilla, M.A., and Krell, T. (2019). Concentration dependent effect of plant root exudates on the chemosensory systems of Pseudomonas putida KT2440. Front. Microbiol. 10: 78. https://doi.org/10.3389/fmicb.2019.00078.
37 Lu, H., Jianteng, S., and Lizhong, Z. (2017). The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci. Rep. 7: 7130.
38 Luo, Q., Wang, S., Sun, L., and Wang, H. (2017). Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC‐MS. Sci. Rep. 7: 39878.
39 Massalha, H., Korenblum, E., Tholl, D., and Aharoni (2017). Small molecules below‐ground: the role of specialized metabolites in the rhizosphere. Plant J. 90 (4): 788–807.
40 Micallef, S.A., Shiaris, M.P., and Colón‐Carmona, A. (2009). Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J. Exp. Bot. 60 (6): 1729–1742.
41 Monchgesang, S., Strehmel, N., Schmidt, S. et al. (2016). Natural variation of root exudates in Arabidopsis thaliana‐linking metabolomic and genomic data. Sci. Rep. 6: 29033. https://doi.org/10.1038/srep29033.
42 Neal, A.L., Ahmad, S., Gordon‐Weeks, R., and Ton, J. (2012). Benzoxazinoids in root exudates of maize attracts Pseudomonas putida to the rhizosphere. PLoS One 7: e35498. https://doi.org/10.1371/journal.pone.0035498.
43 Neumann, G., Bott, S., Ohler, M.A. et al. (2014). Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 5: 2. https://doi.org/10.3389/fmicb.2014.00002.
44 Oburger, E., Dell Mour, M., Hann, S. et al. (2013). Evaluation of a novel tool for sampling root exudates from soil‐grown plants compared to conventional techniques. Environ. Exp. Bot. 87: 235–247.
45 Oleghe, E., Naveed, M., Baggs, E.M., and Hallett, P.D. (2017). Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant and Soil 421: 19. https://doi.org/10.1007/s11104‐017‐3424‐5.
46 Olga, C.C., Franzaring, J., Schmid, I. et al. (2017). Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob. Chang. Biol. 23: 1292–1304. https://doi.org/10.1111/gcb.13503.
47 Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6: 763. https://doi.org/10.1038/nrmicro1987.
48 Phillips, R.P., Erlitz, Y., Bier, R., and Bernhardt, E.S. (2008). New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22: 90–999.
49 Poschenrieder, C., Tolra, R.P., and Barcelo, J. (2005). A role for cyclic hydroxamates in aluminium resistance in maize? J. Inorg. Biochem. 99 (9): 1830–1836.
50 Robin, A., Vansuyt, G., Hinsinger, P. et al. (2008). Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv. Agron. 99: 183–225.
51 Schulz‐Bohm, K., Gerards, S., Hundscheid, M. et al. (2018). Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 12 (5): 1252–1262.
52 Shen, Y., Strom, L., Jonsson, J.A., and Tyler, G. (1996). Low‐molecular organic acids in the rhizosphere soil solution of beech forest (Fagus sylvatica L.) cambisols determined by ion chromatography using supported liquid membrane enrichment technique. Soil Biol. Biochem. 28: 1163–1169. https://doi.org/10.1016/0038‐0717(96)00119‐8.
53 Smith, W.H. (1970). Root exudates of seedling and mature sugar maple. Phytopathology 60: 701–703. https://doi.org/10.1094/Phyto‐60‐701.
54 Smith, W.H. (1976). Character and significance of forest tree root exudates. Ecology 57: 24–331. https://doi.org/10.2307/1934820.
55 Song, F., Han, X., Zhu, X., and Herbert, S.J. (2012). Response to water stress of soil enzymes and root exudates from drought and non‐drought tolerant corn hybrids at different growth stages. Can. J. Soil Sci. 92: 501–507.
56 Steinauer, K., Chatzinotas, A., and Eisenhauer, N. (2016). Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecol. Evol. 6: 7387–7396.
57 Strehmel, N., Bottcher, C., Schmidt, S., and Scheel, D. (2014). Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108: 35–46.
58 Subbarao, G.V., Nakahara, T., Ishikawa, H. et al. (2013). Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant and Soil 366 (1–2): 243–259.
59 Sugiyama, A. (2019). The soybean rhizosphere: metabolites, microbes, and beyond – a review. J. Adv. Res. (In Press) doi: https://doi.org/10.1016/j.jare.2019.03.005.
60 Sun, L., Lu, Y., Yu, F. et al. (2016). Biological nitrification inhibition by rice root exudates and its relationship with nitrogen‐use efficiency. New Phytol. 212 (3): 646–656.
61 Susan, V.F. (2018). Root exudates affect soil stability, water repellency. Sci. Daily 04: 809–1833.
62 Tin, W.W.T., Hayashi, H., Otomatsu, T. et al. (2009). Caprolactam, an inhibitory allelochemical exuded from germinating buckwheat (Fagopyrum esculentum) seeds. Heterocycles 78: 1217–1222. https://doi.org/10.3987/Com‐08‐11601.
63 Tsuno, Y., Teruhisa, F., Keiji, E. et al. (2018). Soyasaponins: a new class of root exudates in soybean (Glycine max). Plant Cell Physiol. 59 (2): 366–375.
64 Tuason, M.M.S. and Arocena, J.M. (2009). Root organic acid exudates and properties of rhizosphere soils of white spruce (Picea glauca) and sub alpine fir (Abieslasiocarpa). Can. J. Soil Sci. 89 (3): 287–300. https://doi.org/10.4141/CJSS08021.
65 Valentinuzzi, F., Cesco, S., Tomasi, N., and Mimmo, T. (2015). Influence of different trap solutions on the determination of root exudates in Lupinusalbus L. Biol. Fertil. Soils 51 (6): 757–765.
66 Verma, A., Kumar, S., Hemansi, G.K. et al. (2018). Rhizosphere metabolite profiling: an opportunity to understand plant‐microbe interactions for crop improvement. In: Crop Improvement Through Microbial Biotechnology, 1e (eds. R. Prasad, S.S. Gill and N. Tuteja), 343–361. Amsterdam: Elsevier.
67 Vives‐Peris, V., Gómez‐Cadenas, A., and Perez‐Clemente, R.M. (2017). Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Rep. 36 (12): 1971–1984. https://doi.org/10.1007/s00299‐017‐2214‐0.
68 Vives‐Peris, V., Molina, L., Segura, A. et al. (2018). Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria. J. Plant Physiol. 228: 208–217. https://doi.org/10.1016/j.jplph.2018.06.003.
69 Vranova, V., Rejsek, K., Skene, K.R. et al. (2013). Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. J. Plant Nutr. Soil Sci. 176: 175–199.
70 Weston, L.A. and Mathesius, U. (2013). Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J. Chem. Ecol. 39: 283–297.
71 Wouters, F.C., Blanchette, B., Gershenzon, J., and Vassao, D.G. (2016). Plant defence and herbivore counter‐defence: benzoxazinoids and insect herbivores. Phytochem. Rev. 15: 1127–1151. https://doi.org/10.1007/s11101‐016‐9481‐1.
72 Ziegler, J., Schmidt, S., Chutia, R. et al. (2016). Non‐targeted profiling of semi‐polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. J. Exp. Bot. 67 (5): 1421–1432.
73 Zwetsloot, M.J., Kessler, A., and Bauerle, T.L. (2019). Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218: 530–541.