Читать книгу Biobased Composites - Группа авторов - Страница 23

References

Оглавление

1  1 AL‐Oqla, F.M., Sapuan, M.S., Ishak, M.R., and Nuraini, A.A. (2015). Selecting natural fibers for bio‐based materials with conflicting criteria. American Journal of Applied Sciences 12 (1): 64–71.

2  2 AL‐Oqla, F.M. and Sapuan, S. (2015). Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. JOM 67 (10): 2450–2463.

3  3 Al‐Oqla, F.M. and Sapuan, S. (2018). Natural fiber composites. In: Kenaf Fibers and Composites, vol. 1 (eds. S.M. Sapuan, J. Sahari, M.R. Ishak and M.L. Sanyang). CRC Press.

4  4 AL‐Oqla, F.M. (2017). Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose 24 (6): 2523–2530.

5  5 Al‐Oqla, F.M. and El‐Shekeil, Y. (2019). Investigating and predicting the performance deteriorations and trends of polyurethane bio‐composites for more realistic sustainable design possibilities. Journal of Cleaner Production 222: 865–870.

6  6 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2018). Properties and common industrial applications of polyvinyl fluoride (PVF) and polyvinylidene fluoride (PVDF). In: IOP Conference Series: Materials Science and Engineering, vol. 409, 012021. IOP Publishing.

7  7 Al‐Oqla, F.M., Hayajneh, M.T., and Fares, O. (2019). Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. Journal of Cleaner Production 241: 118256.

8  8 AL‐Oqla, F.M. and Omari, M.A. (2017). Sustainable biocomposites: challenges, potential and barriers for development. In: Green Biocomposites: Manufacturing and Properties (eds. M. Jawaid, S.M. Sapuan and O.Y. Alothman), 13–29. Cham: Springer.

9  9 AL‐Oqla, F.M. and Salit, M.S. (2017). Material selection of natural fiber composites using the analytical hierarchy process. In: Materials Selection for Natural Fiber Composites, vol. 1, 169–234. Cambridge, USA: Woodhead Publishing, Elsevier.

10 10 AL‐Oqla, F.M., Sapuan, M.S., Ishak, M.R., and Aziz, N.A. (2014). Combined multi‐criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. BioResources 9 (3): 4608–4621. https://doi.org/10.15376/biores.9.3.4608‐4621.

11 11 AL‐Oqla, F.M., Sapuan, M.S., Ishak, M.R., and Nuraini, A.A. (2015). Decision making model for optimal reinforcement condition of natural fiber composites. Fibers and Polymers 16 (1): 153–163.

12 12 AL‐Oqla, F.M. and Sapuan, S. (2018). Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio‐composites for better utilization of resources. Journal of Polymers and the Environment 26 (3): 1290–1296.

13 13 Al‐Oqla, F.M., Sapuan, S., Anwer, T. et al. (2015). Natural fiber reinforced conductive polymer composites as functional materials: a review. Synthetic Metals 206: 42–54.

14 14 Al‐Oqla, F.M., Sapuan, S., and Fares, O. (2018). Electrical‐based applications of natural fiber vinyl polymer composites. In: Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites, 349–367. Elsevier.

15 15 AL‐Oqla, F.M., Sapuan, S., Ishak, M., and Nuraini, A. (2015). A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. International Journal of Polymer Analysis and Characterization 20: 191–205. (just‐accepted).

16 16 AL‐Oqla, F.M., Sapuan, S., Ishak, M., and Nuraini, A. (2015). Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Computers and Electronics in Agriculture 113: 116–127.

17 17 AL‐Oqla, F.M., Sapuan, S., Ishak, M., and Nuraini, A. (2016). A decision‐making model for selecting the most appropriate natural fiber – polypropylene‐based composites for automotive applications. Journal of Composite Materials 50 (4): 543–556.

18 18 AL‐Oqla, F.M., Sapuan, S., Ishak, M., and Nuraini, A. (2014). A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources 10 (1): 299–312.

19 19 AL‐Oqla, F.M., Sapuan, S., and Jawaid, M. (2016). Integrated mechanical–economic – environmental quality of performance for natural fibers for polymeric‐based composite materials. Journal of Natural Fibers 13 (6): 651–659.

20 20 AL‐Oqla, F.M. and Sapuan, S. (2014). Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production 66: 347–354. https://doi.org/10.1016/j.jclepro.2013.10.050.

21 21 Iannotti, G., Fair, N., Tempesta, M. et al. (2018). Studies on the environmental degradation of starch‐based plastics. In: Degradable Materials, 425–446. CRC Press.

22 22 Ibrahim, H., Farag, M., Megahed, H., and Mehanny, S. (2014). Characteristics of starch‐based biodegradable composites reinforced with date palm and flax fibers. Carbohydrate Polymers 101: 11–19.

23 23 Ilyas, R., Sapuan, S., Ishak, M., and Zainudin, E. (2018). Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers 202: 186–202.

24 24 AL‐Oqla, F.M., Almagableh, A., and Omari, M.A. (2017). Design and Fabrication of Green Biocomposites Green Biocomposites, 45–67. Cham: Springer.

25 25 AL‐Oqla, F.M., Alothman, O.Y., Jawaid, M. et al. (2014). Processing and properties of date palm fibers and its composites. In: Biomass and Bioenergy, 1–25. Cham: Springer.

26 26 Al‐Oqla, F.M. and Omar, A.A. (2015). An expert‐based model for selecting the most suitable substrate material type for antenna circuits. International Journal of Electronics 102 (6): 1044–1055.

27 27 AL‐Oqla, F.M., Omar, A.A., and Fares, O. (2018). Evaluating sustainable energy harvesting systems for human implantable sensors. International Journal of Electronics 105 (3): 504–517.

28 28 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Lightweight and durable PVDF–SSPF composites for photovoltaics backsheet applications: thermal, optical and technical properties. Materials 12 (13): 2104.

29 29 Almagableh, A., Al‐Oqla, F.M., and Omari, M.A. (2017). Predicting the effect of nano‐structural parameters on the elastic properties of carbon nanotube‐polymeric based composites. International Journal of Performability Engineering 13 (1): 73.

30 30 Toldy, A., Szolnoki, B., and Marosi, G. (2011). Flame retardancy of fibre‐reinforced epoxy resin composites for aerospace applications. Polymer Degradation and Stability 96 (3): 371–376.

31 31 Li, J., Baker, B.A., Mou, X. et al. (2014). Biopolymer/calcium phosphate scaffolds for bone tissue engineering. Advanced Healthcare Materials 3 (4): 469–484.

32 32 Butcher, A.L., Offeddu, G.S., and Oyen, M.L. (2014). Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends in Biotechnology 32 (11): 564–570.

33 33 Freeman, R., Boekhoven, J., Dickerson, M.B. et al. (2015). Biopolymers and supramolecular polymers as biomaterials for biomedical applications. MRS Bulletin 40 (12): 1089–1101.

34 34 Joung, Y.H. (2013). Development of implantable medical devices: from an engineering perspective. International Neurourology Journal 17 (3): 98–106. https://doi.org/10.5213/inj.2013.17.3.98.

35 35 Modjarrad, K. and Ebnesajjad, S. (2013). Handbook of Polymer Applications in Medicine and Medical Devices. Elsevier.

36 36 AL‐Oqla, F.M. and Sapuan, S.M. (2014). Date palm fibers and natural composites. Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014. Putrajaya (28 January 2014).

37 37 AL‐Oqla, F.M. and Sapuan, S.M. (2014). Enhancement selecting proper natural fiber composites for industrial applications. Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014. Putrajaya (28 January 2014).

38 38 Khairul, M., Faris, S., AL‐Oqla, F.M., and Zainudin, E. (2019). Experimental investigation and numerical prediction for the fatigue life durability of austenitic stainless steel at room temperature. Engineering Solid Mechanics 7 (2): 121–130.

39 39 Rashid, B., Leman, Z., Jawaid, M. et al. (2017). Eco‐friendly composites for brake pads from agro waste: a review. In: Reference Module in Materials Science and Materials Engineering. Elsevier.

40 40 Sadrmanesh, V., Chen, Y., Rahman, M., and Al‐Oqla, F.M. (2019). Developing a decision making model to identify the most influential parameters affecting mechanical extraction of bast fibers. Journal of Cleaner Production 238: 117891.

41 41 Sapuan, S.M., Pua, F.‐L., El‐Shekeil, Y.A., and AL‐Oqla, F.M. (2013). Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Materials & Design 50: 467–470. https://doi.org/10.1016/j.matdes.2013.03.013.

42 42 Peças, P., Carvalho, H., Salman, H., and Leite, M. (2018). Natural fibre composites and their applications: a review. Journal of Composites Science 2 (4): 66.

43 43 Yousef, S., Mumladze, T., Tatariants, M. et al. (2018). Cleaner and profitable industrial technology for full recovery of metallic and non‐metallic fraction of waste pharmaceutical blisters using switchable hydrophilicity solvents. Journal of Cleaner Production 197: 379–392.

44 44 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Development of photovoltaic module with fabricated and evaluated novel backsheet‐based biocomposite materials. Materials 12 (18): 3007.

45 45 Majeed, K., Jawaid, M., Hassan, A. et al. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design 46: 391–410.

46 46 Sanyang, M., Ilyas, R., Sapuan, S., and Jumaidin, R. (2018). Sugar palm starch‐based composites for packaging applications. In: Bionanocomposites for Packaging Applications, 125–147. Springer.

47 47 AL‐Oqla, F.M., Omari, M.A., and Al‐Ghraibah, A. (2017). Predicting the potential of biomass‐based composites for sustainable automotive industry using a decision‐making model. In: Lignocellulosic Fibre and Biomass‐Based Composite Materials, 27–43. Elsevier.

48 48 AL‐Oqla, F.M. and Rababah, M. (2017). Challenges in design of nanocellulose and its composites for different applications. In: Cellulose‐Reinforced Nanofibre Composites, 113–127. Elsevier.

49 49 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Polymer matrix materials selection for short sugar palm composites using integrated multi criteria evaluation method. Composites Part B: Engineering 176: 107342.

50 50 Abdulrahman, K.O., Abed, A.M., Bayode, A. et al. (2018). Hierarchical Composite Materials: Materials, Manufacturing, Engineering, vol. 8. Walter de Gruyter GmbH & Co KG.

51 51 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Photovoltaic applications: status and manufacturing prospects. Renewable and Sustainable Energy Reviews 102: 318–332.

52 52 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Physical and mechanical properties of polyvinylidene fluoride – short sugar palm fiber nanocomposites. Journal of Cleaner Production 235: 473–482.

53 53 Faris Mohammed Khair Faris AL‐Oqla (2015). Enhancement of Evaluation Methodologies for Natural Fiber Composites Material Selection System (Ph.D). UPM.

54 54 Al‐Widyan, M.I. and Al‐Oqla, F.M. (2011). Utilization of supplementary energy sources for cooling in hot arid regions via decision‐making model. International Journal of Engineering Research and Applications 1 (4): 1610–1622.

55 55 Al‐Widyan, M.I. and Al‐Oqla, F.M. (2014). Selecting the most appropriate corrective actions for energy saving in existing buildings A/C in hot arid regions. Building Simulation 7 (5): 537–545. https://doi.org/10.1007/s12273‐013‐0170‐3.

56 56 Dalalah, D., Al‐Oqla, F., and Hayajneh, M. (2010). Application of the Analytic Hierarchy Process (AHP) in multi‐criteria analysis of the selection of cranes. Jordan Journal of Mechanical and Industrial Engineering, JJMIE 4 (5): 567–578.

57 57 Dweiri, F. and Al‐Oqla, F.M. (2006). Material selection using analytical hierarchy process. International Journal of Computer Applications in Technology 26 (4): 182–189. https://doi.org/10.1504/IJCAT.2006.010763.

58 58 Alves, C., Ferrão, P., Silva, A. et al. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production 18 (4): 313–327. https://doi.org/10.1016/j.jclepro.2009.10.022.

59 59 Shah, D.U. (2016). Damage in biocomposites: stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Composites Part A: Applied Science and Manufacturing 83: 160–168.

60 60 Arena, M., Azzone, G., and Conte, A. (2012). A streamlined LCA framework to support early decision making in vehicle development. Journal of Cleaner Production 41: 105–113.

61 61 Black, M., Whittaker, C., Hosseini, S. et al. (2011). Life cycle assessment and sustainability methodologies for assessing industrial crops, processes and end products. Industrial Crops and Products 34 (2): 1332–1339.

62 62 Luz, S.M., Caldeira‐Pires, A., and Ferrao, P. (2010). Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: ecodesign and LCA as strategy for automotive components. Resources, Conservation and Recycling 54 (12): 1135–1144.

63 63 Milani, A., Eskicioglu, C., Robles, K. et al. (2011). Multiple criteria decision making with life cycle assessment for material selection of composites. eXPRESS Polymer Letters 5 (12): 1062–1074. https://doi.org/10.3144/expresspolymlett.2011.104.

64 64 Pegoretti, D.S., Mathieux, F., Evrard, D. et al. (2014). Use of recycled natural fibres in industrial products: a comparative LCA case study on acoustic components in the Brazilian automotive sector. Resources, Conservation and Recycling 84: 1–14.

Biobased Composites

Подняться наверх