Читать книгу Carbon Nanofibers - Группа авторов - Страница 61
References
Оглавление1. Sharon, M. and Sharon, M., Carbon Nano Forms and Applications, McGraw Hill, USA, 2009.
2. Jaybhaye, S., Sharon, M., Sharon, M., Singh, L., Study of Hydrogen Adsorption by Spiral Carbon Nano Fibers Synthesized From Acetylene. Synth React Inorg Met-Org Nano-Metal Chem. 36, 1, 37–42, 2006.
3. Sharon, M., Soga, T., Afre, R.A., Sathiyamoorthy, D., Dasgupta, K., Bhardwaj, S., Sharon, M., Jaybhaye, S., Hydrogen storage by carbon materials synthesized from oil seeds & fibrous plant materials. Int. J. Hydrogen Energy, 32, 17, 4238–4249, 2007.
4. Sharon, M., Pal, B., Subbarayan, M., Application of Photocatalytic Process to inhibit the growth of cancerous cells. Int. J. Nanosyst., 1, 2, 973–979, 2008.
5. Sharon, M. and Sharon, M., Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from them & their Hydrogen Absorption Capacity. Carbon Lett., 13, 3, 161–166, 2012.
6. Mukherjee, B., Kalita, G., Sharon, M., Sharon, M., Hydrogen storage by carbon fibres from cotton. QScience Connect, 201, 45, 2013.
7. Deb, S., Carbon nanomaterials (CNM) from Euglena tuba and study of its antioxidant activity, Shodhganga.inflibnet.ac.in/bitstream/10603/21 978/12/12_ chapter%207.pdf.
8. Karthikeyan, S. and Mahalingam, P., Studies of Yield and Nature of Multi-Walled Carbon Nanotubes Synthesized by Spray Pyrolysis of Pine Oil at Different Temperatures. J. Nanotechnol. Appl., 4, 189–197, 2010.
9. Koziol, K., Boskovich, B.O., Yahya, N., Synthesis of Carbon Nanostructures by CVD Method, Carbon and Oxide Nanostructures. Adv. Struct. Mater., 5, 23–49, 2010.
10. Chen, X.W., Timple, O., Hamid, S.B.A., Schlogl, R., Su, D.S., Direct synthesis of carbon nanofibers on modified biomass-derived activated carbon. Carbon, 47, 1, 340–344, 2009.
11. Khorrami, S.A. and Lotfi, R., Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst. J. Saudi Chem. Soc., 20, 4, 432–436, 2016.
12. Paul, S., Synthesis of carbon nanotubes from renewable plant precursors, PhD thesis, I.I.T. Bombay, India, 2012.
13. Romanovicz, V., Berns, B.A., Carpenter, S.D., Carpenter, S., Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 7, 12, 665–668, 2013.
14. Sharon, M., Sharon, M., Kalita, G., Mukherjee, B., Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers Carbon Lett., 12, 1, 39–43, 2011.
15. Viswanathan, G., Bhowmik, S., Sharon, M., Synthesis and characterisation of carbon nano materials from plant derivatives. Int. J. Mater. Mech. Manuf., 2, 25–28, 2014.
16. Shukla, J., Maldar, N.N., Sharon, M., Tripathi, S., Sharon, M., Synthesis of carbon nano material from different parts of maize using transition metal catalysts Synthesis of carbon nano material from different parts of maize using transition metal catalysts. Der Chemica Sinica, 3, 5, 1058–1070, 2012.
17. Zhu, J., Jia, J., Kwong, F.L., Leung Ng, D.H., Tjong, S.C., Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. Biomass Bioenergy, 36, 12–19, 2012.
18. Deb, A.K. and Chusuei, C.C., Physical and Chemical Properties of Carbon Nanotubes, in: Chapter 11, Aqueous solution surface chemistry of carbon nanotubes, S. Suzuki (Ed.), pp. 263–283, Intech Open, Ltd., London, 2013.
19. Hamad, S.F., Stehling, N., Holland, C., Foreman, J.P., Rodenburg, C., Low- Voltage SEM of Natural Plant Fibers: Microstructure Properties (Surface and Cross-Section) and their Link to the Tensile Properties. Procedia Engineering, www.elsevier.com/locate/procedia 1877–7058 © 2017. 3rd International Conference on Natural Fibers: Advanced Materials for a Greener World, ICNF 2017, Braga, Portugal, 21–23 June 2017.
20. Hsieh, C.-T., Chen, J.-M., Kuo, R.-R., Huang, Y.H., Formations and field emission properties of carbon nanofibers by a simplified thermal growth. Rev. Adv. Mater. Sci., 5, 459–463, 2003.
21. Ferrari, A.C. and Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. J. Phys. Rev. B, 61, 14095, 2000.
22. Rebollo-Plata, B., Lozada-Morales, R., Palomino-Melino, P., Davila-PintLe, J. A., Portillo-Mareno, O., Zelaya Angel, O., Jimenez-Sandowal, Amorphous carbon thin films prepared by electron-gun evaporation. AZo Materials, 1–6, 2005.
23. Müller, S., Kottcke, M., Hammer, L., Heinz, K., Reply. Phys. Rev. Lett., 6, 76, 19, 3660, 1996.
24. Sharon, M., Bhardwaj, S., Jaybhaye, S., Sathiyamoorthy, D., Dasgupt, K., Sharon, M., Hydrogen Adsorption by Carbon Nanomaterials from Natural Source. Asian J. Exp. Sci., 22, 2, 75–88, 2008.
25. Tripathi, S., Sharon, M., Maldar, N.N., Shukla, J., Sharon, M., Carbon Nano Spheres and Nano Tubes Synthesized from Castor Oil as Precursor: For Removal of Arsenic Dissolved in Water. Arch. Appl. Sci. Res., 4, 4, 1788–1795, 2012.
26. Tkachev, A.G., Blinov, S.V., Memetov, N.R., Carbon Nanomater. Hydrogen Mater. Sci. Chem. Carbon Nanomater, vol. l3, T. Nejat Veziroglu (Eds.), Springer Springer Springer IOS Press IOS Press, Netherlands. p. 515, 2007.
27. Viswanathan, G., Bhowmik, S., Sharon, M., Synthesis and characterisation of carbon nano materials from plant derivatives. Int. J. Mater. Mech. Manuf., 2, 25–28, 2014.
28. Zhu, J., Jia, J., Kwong, F.L., Leung Ng, D.H., Tjong, S.C., Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. Biomass Bioenergy, 36, 12–19, 2012.
29. Rud, A.D., Perekos, A.E., Ogenko, V.M., Shpak, A.P., Uvarov, V.N., Chuistov, K. V., Lakhnik, A.M., Voynash, V.Z., Ivaschuk, L.I., VM, Different states of carbon produced by high-energy plasmochemistry synthesis. J. Non-Cryst. Solids, 353, 3650, 2007.
30. Mulyadi, A., Zhang, Z., Dutzer, M., Liu, W., Deng, Y., Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution. Nano Energy, 32, 336–346, 2017.
31. García-Gutiérrez, M.C., Nogales, A., Rued, D.R., Domingo, C., García-Ramos, J.V., Broza, G., Roslaniec, Z., Schulte, K., Ezquerra, T.A., X-ray microdiffraction and micro-Raman study on an injection moulding SWCNT-polymer nanocomposite. Technology, 67, 798–805, 2007.
32. Smedley, P.L. and Kinniburgh, D.G., A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., 17, 517–568, 2002.
33. Tatken, R.L. and Lewis, R.J. (Eds.), Registry of toxic effects of chemical substances, 3, 1981–82, NIOS; U.S. DHHS, (U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES), PB. 85–218071) PB. 85–218071, NTIS, Cincinnati, Ohio 45226, 1983.
34. Deverel, S.J. and Millard, S.P., Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California. Environ. Sci. Technol., 22, 697–702, 1988.
35. Shukla, J., Maldar, N.N., Sharon, M., Tripathi, S., Sharon, M., Synthesis of carbon nano material from different parts of maize using transition metal catalysts. Der Chemica Sinica, 3, 5, 1058–1070, 2012.
36. Tripathi, S., Sharon, M., Maldar, N.N., Shukla, J., Sharon, M., A Comparative Study of Carbon Nano Materials Synthesized from Karanja-Oil, Using Metal & Mixed Metal Catalysts. Adv. Appl. Sci. Res., 3, 5, 2726–2732, 2012.
37. Sharon, M., Apte, P.R., Purandara, S.C., Zacharia, R., Application of the Taguchi Analytical Method for Optimization of Effective Parameters of the Chemical Vapour Deposition Controlling the Production of Nanotube/ Nanobeads. J. Nanosci. Nanotechnol., 5, 2, 288–295, 2005.
38. Camacho, R.E., Morgan, A.R., Flores, M.C., McLeod, T.A., Kumsomboone, V.S., Mordecai, B.J., Bhattacharje, R., Tong, W., Wagner, B.K., Flicker, J.D., Turano, S.P., Ready, W.J., W.J., Carbon nanotube arrays for photovoltaic applications. J. Miner. Met. Mater. Soc., 59, 39, 2007.
39. Endo, M., Kim, Y.A., Hayashi, T., Pyrolytic Carbon Nanofibers and Nanotubes: Structure and Applications, Perspectives of Fullerene Nanotechnology, pp. 83–92, Springer, Berlin, 2007, Hammel, et al. 2003.
40. An, X. and Zeng, H., Functionalization of carbon nanobeads and their use as metal ion adsorbents. Carbon, 41, 2889, 2003.
41. Kshirsagar, D.E., Puri, V., Sharon, M., Sharon, M., Microwave Absorption Study of Carbon Nano Material Synthesized from natural Oils. Carbon Sci., 7, 245, 2006.
42. Kshirsagar, D.E., Puri, V., Sharon, M., Sharon, M., Electromagnetic Wave-Absorbing Properties of Pongamia Glabra Based-CNMs in the 8-12 GHz Range. Synth. React. Inorg. Met. -Org. Nano-Metal Chem., 37, 477, 2007.
43. Kshirsagar, D.E., Puri, V., Sharon, M., Jaybhaye, S., Afre, R.A., Somani, P., Sharon, M., Carbon Nanobeads from Brassica Nigra Oil: Synthesis & Characterization. Adv. Sci. Lett., 2, 388, 2009.
44. Kshirsagar, D.E., Puri, V., Zachariah, M., Sharon, M., Di Zitti, E., Sharon, M., Investigation of microwave absorption property in Carbon Nano Fiber film synthesized from Linum usitatissimum oil. Int. J. Nanosci., 9, 5, 407–411, 2010.
45. Khairnar, V., Jaybhaye, S., Hu, C.-C., Afre, R., Soga, T., Sharon, M., Sharon, M., Development of Supercapacitor Using Carbon Material Synthesized from Plant Derived Precursors. Carbon Lett., 9, 3, 188–194, 2008.
46. Gaddam, R.R., Kantheti, S., Narayan, R., Raju, K.V.S.N., Bulk synthesis of green carbon nanomaterial from Desmostachta bipinnata for the development of functional polyurethane hybrid coating, Prog. Org. Coat., 79, 37–42, 2015.
47. Zhou, L., Peng, F., Xixi, C., Zhou, S., Yong, Y., Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. Appl. Catal. B: Environ., 188, 31–38, 2016.
48. Che, G., Lakshmi, B.B., Martin, C.R., Fisher, E.R., Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chem. Mater., 10, 260–267, 1998.
1 Email: sharonmadhuri@gmail.com