Читать книгу Soil Bioremediation - Группа авторов - Страница 18

References

Оглавление

1 1 Travis, A.S. (2002). Contaminated earth and water: a legacy of the synthetic dyestuffs industry. Ambix 49: 21–50.

2 2 Ostroumov, S.A. (2003). Anthropogenic effects on the biota: towards a new system of principles and criteria for analysis of ecological hazards. Rivista di Biologia 96: 159–169.

3 3 Labie, D. (2007). Developmental neurotoxicity of industrial chemicals. Medical Sciences (Paris) 23: 868–872.

4 4 Robinson, T., McMullan, G., Marchant, R. et al. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology 77: 247–255.

5 5 Felsot, A.S., Racke, K.D., and Hamilton, D.J. (2003). Disposal and degradation of pesticide waste. Reviews of Environmental contamination and Toxicology 177: 123–200.

6 6 Lodolo, A., Gonzalez‐Valencia, E., and Miertus, S. (2001). Overview of remediation technologies for persistent toxic substances. Archives of Industrial Hygien and Toxicology 52: 253–280.

7 7 Scullion, J. (2006). Remediating polluted soils. Naturwissenschaften 93: 51–65.

8 8 Shannon, M.J. and Unterman, R. (1993). Evaluating bioremediation: distinguishing fact from fiction. Annual Review of Microbiology 47: 715–738.

9 9 Snellinx, Z., Nepovim, A., Taghavi, S. et al. (2002). Biological remediation of explosives and related nitroaromatic compounds. Environmental Science and Pollution Research International 9: 48–61.

10 10 Lovley, D.R. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nature Reviews Microbiology 1: 35–44.

11 11 Diaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology 7: 173–180.

12 12 Parales, R.E. and Haddock, J.D. (2004). Biocatalytic degradation of pollutants. Current Opinion in Biotechnology 15: 374–379.

13 13 Nojiri, H. and Tsuda, M. (2005). Functional evolution of bacteria in degradation of environmental pollutants. Tanpakushitsu Kakusan Koso 50: 1505–1509.

14 14 Janssen, D.B., Dinkla, I.J., Poelarends, G.J. et al. (2005). Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environmental Microbiology 7: 1868–1882.

15 15 Zhang, J., Zhang, H., Li, X. et al. (2006). Soil microbial ecological process and microbial functional gene diversity. Ying Yong Sheng Tai Xue Bao 17: 1129–1132.

16 16 Arai, H., Ohishi, T., Chang, M.Y. et al. (2000). Arrangement and regulation of the genes for meta‐pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146: 1707–1715.

17 17 Solyanikova, I.P. and Golovleva, L.A. (2004). Bacterial degradation of chlorophenols: pathways, biochemical and genetic aspects. Journal of Environmental Science and Health 39: 333–351.

18 18 Symons, Z.C. and Bruce, N.C. (2006). Bacterial pathways for degradation of nitroaromatics. Natural Product Reports 23: 845–850.

19 19 Heidelberg, J.F., Paulsen, I.T., and Nelson, K.E. (2002). Genome sequence of the dissimilatory metal ion‐reducing bacterium Shewanella oneidensis. Nature Biotechnology 20: 1118–1123.

20 20 Golyshin, P.N., Martins Dos Santos, V.A., and Kaiser, O. (2003). Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon‐degrading bacterium that plays a global role in oil removal from marine systems. Journal of Biotechnology 106: 215–220.

21 21 Rabus, R. (2005). Functional genomics of an anaerobic aromatic‐degrading denitrifying bacterium, strain EbN1. Applied Microbiology and Biotechnology 68: 580–587.

22 22 Zhao, B. and Poh, C.L. (2008). Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8: 874–881.

23 23 Thompson, I.P., van der Gast, C.J., Ciric, L. et al. (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology 7: 909–915.

24 24 Vinas, M., Sabate, J., Guasp, C. et al. (2005). Culture‐dependent and ‐independent approaches establish the complexity of a PAH‐degrading microbial consortium. Canadian Journal of Microbiology 51: 897–909.

25 25 Dinkla, I.J., Gabor, E.M., and Janssen, D.B. (2001). Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Environmental Microbiology 67: 3406–3412.

26 26 Kim, H.J. and Graham, D.W. (2003). Effects of oxygen and nitrogen conditions on the transformation kinetics of 1,2‐dichloroethenes by Methylosinus trichosporium OB3b and its sMMOC mutant. Biodegradation 14: 407–414.

27 27 Lovanh, N., Hunt, C.S., and Alvarez, P.J. (2002). Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments. Water Research 36: 3739–3746.

28 28 Zhou, Q., Zhang, J., Fu, J. et al. (2008). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta 606: 135–150.

29 29 Purohit, H.J., Raje, D.V., Kapley, A. et al. (2003). Genomics tools in environmental impact assessment. Environmental Science and Technology 37: 356A–363A.

30 30 Paul, D., Pandey, G., Meier, C. et al. (2006). Bacterial community structure of a pesticide‐contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiology Ecology 57: 116–127.

31 31 Verma, J.P. and Jaiswal, D.K. (2016). Book review: advances in biodegradation and bioremediation of industrial waste. Frontiers in Microbiology 6: 1–2.

32 32 Frutos, F.J.G., Pérez, R., Escolano, O. et al. (2012). Remediation trials for hydrocarbon‐contaminated sludge from a soil washing process: evaluation of bioremediation technologies. Journall of Hazardous Materials 199: 262–271.

33 33 Smith, E., Thavamani, P., Ramadass, K. et al. (2015). Remediation trials for hydrocarbon‐contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. International Biodeterioration and Biodegradation 101: 56–65.

34 34 Fruchter, J. (2002). In situ treatment of chromium‐contaminated groundwater. Environmental Science and Technology 36: 464A–472A.

35 35 Farhadian, M., Vachelard, C., Duchez, D. et al. (2007). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology 99: 5296–5308.

36 36 Jorgensen, K.S. (2007). In situ bioremediation. Advances in Applied Microbiology 61: 285–305.

37 37 Carberry, J.B. and Wik, J. (2001). Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated by petroleum. Journal of Environmental Science and Health 36: 1491–1503.

38 38 Prpich, G.P., Adams, R.L., and Daugulis, A.J. (2006). Ex‐situ bioremediation of phenol‐contaminated soil using polymer beads. Biotechnology Letters 28: 2027–2031.

39 39 Kim, S.J., Park, J.Y., Lee, Y.J. et al. (2005). Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory‐prepared pentadecane contaminated kaolinite. Journal of Hazardous Materials 118: 171–176.

40 40 Bouwer, E., Durant, N., Wilson, L. et al. (1994). Degradation of xenobiotic compounds in situ: capabilities and limits. FEMS Microbiology Reviews 15: 307–317.

41 41 Romantschuk, M., Sarand, I., and Petanen, T. (2000). Means to improve the effect of in‐situ bioremediation of contaminated soil: an overview of novel approaches. Environmental Pollution 107: 179–185.

42 42 Mandelbaum, R.T., Shati, M.R., and Ronen, D. (1997). In situ microcosms in aquifer bioremediation studies. FEMS Microbiology Reviews 20: 489–502.

43 43 Schmidt, B.F., Chao, J., Zhu, Z. et al. (1997). Signal amplification in the detection of single‐copy DNA and RNA by enzyme‐catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29‐tyramide. Journal of Histochemistry and Cytochemistry 45: 365–373.

44 44 Scow, K.M. and Hicks, K.A. (2005). Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology 16: 246–253.

45 45 Janikowski, T.B., Velicogna, D., Punt, M. et al. (2002). Use of a two‐phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp. Applied Microbiology and Biotechnology 59: 368–376.

46 46 Di Gennaro, P., Collina, E., Franzetti, A. et al. (2005). Bioremediation of diethylhexyl phthalate contaminated soil: a feasibility study in slurry‐ and solid‐phase reactors. Environmental Science and Technology 39: 325–330.

47 47 Omenn, G.S. (1992). Environmental biotechnology: biotechnology solutions for a global environmental problem, hazardous chemical wastes. Asia Pacific Journal of Public Health 6: 40–45.

48 48 Robles‐Gonzalez, I.V., Fava, F., and Poggi‐Varaldo, H.M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories 7: 5–17.

49 49 Kao, C.M., Chen, S.C., Wang, J.Y. et al. (2003). Remediation of PCE‐contaminated aquifer by an in situ two‐layer biobarrier: laboratory batch and column studies. Water Resources 37: 27–38.

50 50 Glover, K.C., Munakata‐Marr, J., and Illangasekare, T.H. (2007). Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology. Environmental Science and Technology 41: 1384–1389.

51 51 El Fantroussi, S. and Agathos, S.N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinions in Microbiolgy 8: 268–275.

52 52 van der Gast, C.J., Whiteley, A.S., and Thompson, I.P. (2004). Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal‐working fluid. Environmental Microbiology 6: 254–263.

53 53 Roane, T.M., Josephson, K.L., and Pepper, I.L. (2001). Dual‐bioaugmentation strategy to enhance remediation of co‐contaminated soil. Applied Environmental Microbiology 67: 3208–3215.

54 54 Ledin, M. (2000). Accumulation of metals by microorganisms – processes and importance for soil systems. Earth Science Reviews 51: 1–31.

55 55 Rahman, K.S.M., Banat, I.M., Thahira, J. et al. (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith, and rhamnolipid biosurfactant. Bioresource Technology 81: 25–32.

56 56 Nyer, E.K., Payne, F., and Suthersan, S. (2002). Environment vs. bacteria or let's play “name that bacteria”. Ground Water Monitoring and Remediation 23: 36–45.

57 57 Alisi, C., Musella, R., Tasso, F. et al. (2009). Bioremediation of diesel oil in a cocontaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Science of the Total Environment 407: 3024–3032.

58 58 Li, X.J., Lin, X., Li, P.J. et al. (2009). Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. Journal of Hazardous Materials 172: 601–605.

59 59 Gentry, T.J., Rensing, C., and Pepper, I.L. (2004). New approaches for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science and Technology 34: 447–494.

60 60 Goldstein, R.M., Mallory, L.M., and Alexander, M. (1985). Reasons for possible failure of inoculation to enhance biodegradation. Applied Environmental Microbiology 50: 977–983.

61 61 Leahy, J.G. and Colwell, R.R. (1990). Microbial‐degradation of hydrocarbons in the environment. Microbiologial Reviews 54: 305–315.

62 62 Mishra, S., Jyot, J., Kuhad, R.C. et al. (2001). In situ bioremediation potential of an oily sludge‐degrading bacterial consortium. Current Microbiology 43: 328–335.

63 63 Moslemy, P., Neufeld, R.J., and Guiot, S.R. (2002). Biodegradation of gasoline by gellan gum‐encapsulated bacterial cells. Biotechnology and Bioengineering 80: 175–184.

64 64 Obuekwe, C.O. and Al‐Muttawa, E.M. (2001). Self‐immobilized bacterial cultures with potential for application as ready‐to‐use seeds for petroleum bioremediation. Biotechnology Letters 23: 1025–1032.

65 65 McLoughlin, A.J. (1994). Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. In: Biotechnics/Wastewater (ed. T. Scheper), 1–45. Berlin: Springer.

66 66 Cassidy, M.B., Lee, H., and Trevors, J.T. (1996). Environmental applications of immobilized microbial cells: a review. Journal of Industrial Microbiology and Biotechnology 16: 79–101.

67 67 vanVeen, J.A., vanOverbeek, L.S., and vanElsas, J.D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews 61: 121–135.

68 68 Bouchez, T., Patureau, D., Dabert, P. et al. (2000). Ecological study of a bioaugmentation failure. Environmental Microbiology 2: 179–190.

69 69 Dibble, J.T. and Bartha, R. (1979). Effect of environmental parameters on the biodegradation of oil sludge. Applied Environmental Microbiology 37: 729–739.

70 70 Atlas, R.M. (1995). Bioremediation of petroleum pollutants. International Biodeterioration and Biodegradation 35: 317–327.

71 71 Delille, D., Delille, B., and Pelletier, E. (2002). Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microbial Ecology 44: 118–126.

72 72 Nikolopoulou, M. and Kalogerakis, N. (2009). Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. Journal of Chemical Technology and Biotechnology 84: 802–807.

73 73 Sarkar, D., Ferguson, M., Datta, R. et al. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution 136: 187–195.

74 74 Sugai, S.F., Lindstrom, J.E., and Braddock, J.F. (1997). Environmental influences on the microbial degradation of Exxon Valdez oil on the shorelines of Prince William Sound, Alaska. Environmental Science and Technology 31: 1564–1572.

75 75 Mulkins‐Phillips, G.J. and Stewart, J.E. (1974). Effect of environmental parameters on bacterial‐degradation of bunker‐C oil, crude oils, and hydrocarbons. Applied Microbiology 28: 915–922.

76 76 Horel, A. and Schiewer, S. (2009). Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Regions Science and Technology 58: 113–119.

77 77 Bordoloi, N.K. and Konwar, B.K. (2009). Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. Journal of Hazardous Materials 170: 495–505.

78 78 Ron, E.Z. and Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology 13: 249–252.

79 79 Baek, K.H., Yoon, B.D., Kim, B.H. et al. (2007). Monitoring of microbial diversity and activity during bioremediation of crude OH‐contaminated soil with different treatments. Journal of Microbiology and Biotechnology 17: 67–73.

80 80 Hamdi, H., Benzarti, S., Manusadzianas, L. et al. (2007). Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry 39: 1926–1935.

81 81 Hankard, P.K., Svendsen, C., Wright, J. et al. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Science of the Total Environment 330: 9–20.

82 82 Bento, F.M., Camargo, F.A.O., Okeke, B.C. et al. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresoures Technology 96: 1049–1055.

83 83 Thomassin‐Lacroix, E.J.M., Eriksson, M., Reimer, K.J. et al. (2002). Biostimulation and bioaugmentation for on‐site treatment of weathered diesel fuel in Arctic soil. Applied Microbiology and Biotechnology 59: 551–556.

84 84 Simon, M.A., Bonner, J.S., McDonald, T.J. et al. (1999). Bioaugmentation for the enhanced bioremediation of petroleum in a wetland. Polycyclic Aromatic Compounds 14: 231–239.

85 85 Lendvay, J.M., Loffler, F.E., Dollhopf, M. et al. (2003). Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environmental Science and Technology 37: 1422–1431.

Soil Bioremediation

Подняться наверх