Читать книгу The Handbook of Speech Perception - Группа авторов - Страница 28

REFERENCES

Оглавление

1 Barker, J., & Cooke, M. (1999). Is the sine‐wave cocktail party worth attending? Speech Communication, 27, 159–174.

2 Bertelson, P., Vroomen, J., & de Gelder, B. (1997). Auditory–visual interaction in voice localization and in bimodal speech recognition: The effects of desynchronization. In C. Benoît & R. Campbell (Eds), Proceedings of the Workshop on Audio‐Visual Speech Processing: Cognitive and computational approaches (pp. 97–100). Rhodes, Greece: ESCA.

3 Billig, A. J., Davis, M. H., & Carlyon, R. P. (2018). Neural decoding of bistable sounds reveals an effect of intention on perceptual organization. Journal of Neuroscience, 38, 2844–2853.

4 Bregman, A. S. (1990). Auditory scene analysis. Cambridge, MA: MIT Press.

5 Bregman, A. S., Abramson, J., Doehring, P., & Darwin, C. J. (1985). Spectral integration based on common amplitude modulation. Perception & Psychophysics, 37, 483–493.

6 Bregman, A. S., Ahad, P. A., & Van Loon, C. (2001). Stream segregation of narrow‐band noise bursts. Perception & Psychophysics, 63, 790–797.

7 Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of order in rapid sequence of tones. Journal of Experimental Psychology, 89, 244–249.

8 Bregman, A. S., & Dannenbring, G. L. (1973). The effect of continuity on auditory stream segregation. Perception & Psychophysics, 13, 308–312.

9 Bregman, A. S., & Dannenbring, G. L. (1977). Auditory continuity and amplitude edges. Canadian Journal of Psychology, 31, 151–158.

10 Bregman, A. S., & Doehring, P. (1984). Fusion of simultaneous tonal glides: The role of parallelness and simple frequency relations. Perception & Psychophysics, 36, 251–256.

11 Bregman, A. S., Levitan, R., & Liao, C. (1990). Fusion of auditory components: effects of the frequency of amplitude modulation. Perception & Psychophysics, 47, 68–73.

12 Bregman, A. S., & Pinker, S. (1978). Auditory streaming and the building of timbre. Canadian Journal of Psychology, 32, 19–31.

13 Broadbent, D. E., & Ladefoged, P. (1957). On the fusion of sounds reaching different sense organs. Journal of the Acoustical Society of America, 29, 708–710.

14 Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 27, 115–127.

15 Carlyon, R. P., Plack, C. J., Fantini, D. A., & Cusack, R. (2003). Crossmodal and non‐sensory influences on auditory streaming. Perception, 32, 1393–1402.

16 Carrell, T. D., & Opie, J. M. (1992). The effect of amplitude comodulation on auditory object formation in sentence perception. Perception & Psychophysics, 52, 437–445.

17 Cherry, E. (1953). Some experiments on the recognition of speech, with one and two ears. Journal of the Acoustical Society of America, 25, 975–979.

18  Conrey, B. L., & Pisoni, D. B. (2003). Audiovisual asynchrony detection for speech and nonspeech signals. In J.‐L. Schwartz, F. Berthommier, M.‐A. Cathiard, & D. Sodoyer (Eds), Proceedings of AVSP 2003: International Conference on Audio‐Visual Speech Processing. St. Jorioz, France September 4–7, 2003 (pp. 25–30). Retrieved September 24, 2020, from https://www.isca‐speech.org/archive_open/avsp03/av03_025.html.

19 Cooke, M., & Ellis, D. P. W. (2001). The auditory organization of speech and other sources in listeners and computational models. Speech Communication, 35, 141–177.

20 Cusack, R., Carlyon, R. P., & Robertson, I. H. (2001). Auditory midline and spatial discrimination in patients with unilateral neglect. Cortex, 37, 706–709.

21 Cusack, R., Deeks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location frequency region and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30, 643–656.

22 Dannenbring, G. L., & Bregman, A. S. (1976). Stream segregation and the illusion of overlap. Journal of Experimental Psychology: Human Perception and Performance, 2, 544–555.

23 Dannenbring, G. L., & Bregman, A. S. (1978). Streaming vs. fusion of sinusoidal components of complex tones. Perception & Psychophysics, 24, 369–376.

24 Darwin, C. J. (2008). Listening to speech in the presence of other sounds. Philosophical Transactions B: Biological Sciences, 363, 1011–1021.

25 Darwin, C. J., & Gardner, R. B. (1986). Mistuning a harmonic of a vowel: Grouping and phase effects on vowel quality. Journal of the Acoustical Society of America, 79, 838–844.

26 Darwin, C. J., & Sutherland, N. S. (1984). Grouping frequency components of vowels: When is harmonic not a harmonic? Quarterly Journal of Experimental Psychology, 36A, 193–208.

27 Diehl, R. L., Molis, M. R., & Castleman, W. A. (2001). Adaptive design of sound systems. In E. Hume & K. Johnson (Eds), The role of speech perception in phonology (pp. 123–139). San Diego: Academic Press.

28 Dorman, M. F., Cutting, J. E., & Raphael, L. J. (1975). Perception of temporal order in vowel sequences with and without formant transitions. Journal of Experimental Psychology: Human Perception and Performance, 104, 121–129.

29 Eimas, P., Miller, J. (1992). Organization in the perception of speech by young infants. Psychological Science, 3, 340–345.

30 Engineer, C. T., Perez, C. A., Chen, Y. H., et al. (2008). Cortical activity patterns predict speech discrimination ability. Nature Neuroscience, 11, 603–608.

31 Fant, C. G. M. (1960). The acoustic theory of speech production. The Hague: Mouton.

32 Fletcher, H. (1929). Speech and hearing. New York: Van Nostrand.

33 Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.

34 Gaver, W. W. (1993). What in the world do we hear? An ecological approach to auditory event perception. Ecological Psychology, 5, 285–313.

35 Goh, W. D., Pisoni, D. B., Kirk, K. I., & Remez, R. E. (2001). Audio‐visual perception of sinewave speech in an adult cochlear implant user: A case study. Ear and Hearing, 22, 412–419.

36 Hochberg, J. (1974). Organization and the gestalt tradition. In E. C. Carterette and M. P. Friedman (Eds), Handbook of perception: Vol. 1. Historical and philosophical roots of perception(pp. 179–210). New York: Academic Press.

37 Holt, L. L. (2005). Temporally nonadjacent nonlinguistic sounds affect speech categorization. Psychological Science, 16, 305–312.

38 Holt, L. L., & Lotto, A. J. (2006). Cue weighting in auditory categorization: Implications for first and second language acquisition. Journal of the Acoustical Society of America, 119, 3059–3071.

39  Houston, D. M., & Bergeson, T. R. (2014). Hearing versus listening: Attention to speech and its role in language acquisition in deaf infants with cochlear implants, Lingua, 139, 10–25.

40 Howell, P., & Darwin, C. J. (1977). Some properties of auditory memory for rapid formant transitions. Memory & Cognition, 5, 700–708.

41 Iverson, P. (1995). Auditory stream segregation by musical timbre: Effects of static and dynamic acoustic attributes. Journal of Experimental Psychology: Human Perception and Performance, 21, 751–763.

42 Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.

43 Jusczyk, P. W. (1997). The discovery of spoken language. Cambridge, MA: MIT Press.

44 Klatt, D. H. (1989). Review of selected models of speech perception. In W. Marslen‐Wilson (Ed.), Lexical representation and process (pp. 169–226). Cambridge, MA: MIT Press.

45 Lackner, J. R., & Goldstein, L. M. (1974). Primary auditory stream segregation of repeated consonant–vowel sequences. Journal of the Acoustical Society of America, 56, 1651–1652.

46 Liberman, A. M., & Cooper, F. S. (1972). In search of the acoustic cues. In A. Valdman (Ed.), Papers in linguistics and phonetics to the memory of Pierre Delattre (pp. 329–338). The Hague: Mouton.

47 Liberman, A. M., Ingemann, F., Lisker, L., et al. (1959). Minimal rules for synthesizing speech. Journal of the Acoustical Society of America, 31, 1490–1499.

48 Liberman, A. M., Isenberg, D., & Rakerd, B. (1981). Duplex perception of cues stop consonants: Evidence for a phonetic mode. Perception & Psychophysics, 30, 133–143.

49 Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 1–36.

50 Licklider, J. C. R. (1946). Effects of amplitude distortion upon the intelligibility of speech. Journal of the Acoustical Society of America, 18, 429–434.

51 Liebenthal, E., Binder, J. R., Piorkowski, R. L., & Remez, R. E. (2003). Short‐term reorganization of auditory analysis induced by phonetic experience. Journal of Cognitive Neuroscience, 15, 549–558.

52 Lindblom, B. (1996). Role of articulation in speech perception: Clues from production. Journal of the Acoustical Society of America, 99, 1683–1692.

53 Lisker, L. (1978). Rapid vs. rabid: A catalog of acoustic features that may cue the distinction. Haskins Laboratories Status Report on Speech Perception, SR‐54, 127–132.

54 Lotto, A. J., & Kluender, K. R. (1998). General contrast effects in speech perception: Effect of preceding liquid on stop consonant identification. Perception & Psychophysics, 60, 602–619.

55 Lotto, A. J., Kluender, K. R., & Holt, L. L. (1997) Perceptual compensation for coarticulation by Japanese quail. Journal of the Acoustical Society of America, 102, 1135–1140.

56 Magnotti, J. F., & Beauchamp, M. S. (2017). A causal inference model explains perception of the McGurk effect and other incongruent audiovisual speech. PLOS Computational Biology, 13, e1005229.

57 Massaro, D. W. (1994). Psychological aspects of speech perception: Implications for research and theory. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics (pp. 219–263). San Diego: Academic Press.

58 Mattingly, I. G., Liberman, A. M., Syrdal, A. K., & Halwes, T. G. (1971). Discrimination in speech and nonspeech modes. Cognitive Psychology, 2, 131–157.

59 McDermott, J. H. (2009). The cocktail party problem. Current Biology, 19, R1024–1027.

60 Miller, G. A. (1946). Intelligibility of speech: effects of distortion. In Transmission and reception of sounds under combat conditions (pp. 86–108). Washington, DC: National Defense Research Committee.

61 Miller, G. A., & Licklider, J. C. R. (1950). The intelligibility of interrupted speech. Journal of the Acoustical Society of America, 22, 167–173.

62 Mountcastle, V. B. (1998). Perceptual neuroscience. Cambridge, MA: Harvard University Press.

63 Munhall, K. G., Gribble, P., Sacco, L., & Ward, M. (1996). Temporal constraints on the McGurk effect. Perception & Psychophysics, 58, 351–362.

64 Neff, D. L., Jesteadt, W., & Brown, E. L. (1982). The relation between gap discrimination and auditory stream segregation. Perception & Psychophysics, 31, 493–501.

65 Nygaard, L. C. (1993). Phonetic coherence in duplex perception: Effects of acoustic differences and lexical status. Journal of Experimental Psychology, 19, 268–286.

66 Parsons, T. W. (1976). Separation of speech from interfering speech by means of harmonic selection. Journal of the Acoustical Society of America, 60, 911–918.

67 Peña, M., Bonatti, L. L., Nespor, M., & Mehler, J. (2002). Signal‐driven computations in speech processing. Science, 298, 604–607.

68 Pisoni, D. B., Tash, J. (1974). Reaction times to comparisons within and across phonetic categories. Perception & Psychophysics, 15, 285–290.

69 Rand, T. C. (1974). Dichotic release from masking for speech. Journal of the Acoustical Society of America, 55, 678–680.

70 Remez, R. E. (2001). The interplay of phonology and perception considered from the perspective of perceptual organization. In E. Hume & K. Johnson (Eds), The role of speech perception in phonology (pp. 27–52). San Diego: Academic Press.

71 Remez, R. E. (2008). Sine‐wave speech. In E. M. Izhikovitch (Ed.), Encyclopedia of computational neuroscience. Scholarpedia, 3, 2394.

72 Remez, R. E., Dubowski, K. R., Davids, M. L., et al. (2011). Estimating speech spectra by algorithm and by hand for synthesis from natural models. Journal of the Acoustical Society of America, 130, 2173–2178.

73 Remez, R. E., Dubowski, K. R., Ferro, D. F., & Thomas, E. F. (forthcoming) Primitive audiovisual integration in the perception of speech.

74 Remez, R. E., Ferro, D. F., Wissig, S. C., & Landau, C. A. (2008). Asynchrony tolerance in the perceptual organization of speech. Psychonomic Bulletin & Review, 15, 861–865.

75 Remez, R. E., Pardo, J. S., Piorkowski, R. L., & Rubin, P. E. (2001). On the bistability of sine wave analogues of speech. Psychological Science, 12, 24–29.

76 Remez, R. E., & Rubin, P. E. (1984). On the perception of intonation from sinusoidal sentences. Perception & Psychophysics, 35, 429–440.

77 Remez, R. E., & Rubin, P. E. (1993). On the intonation of sinusoidal sentences: Contour and pitch height. Journal of the Acoustical Society of America, 94, 1983–1988.

78 Remez, R. E., Rubin, P. E., Berns, S. M., et al. (1994). On the perceptual organization of speech. Psychological Review, 101, 129–156.

79 Remez, R. E., Rubin, P. E., Nygaard, L. C., & Howell, W. A. (1987). Perceptual normalization of vowels produced by sinu soidal voices. Journal of Experimental Psychology: Human Perception and Performance, 13, 41–60.

80 Remez, R. E., Rubin, P. E., Pisoni, D. B., & Carrell, T. D. (1981). Speech perception without traditional speech cues. Science, 212, 947–950.

81 Remez, R. E., & Thomas, E. F. (2013). Early recognition of speech. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 213–223.

82 Roberts, B., Summers, R. J., & Bailey, P. J. (2010). The perceptual organization of sine‐wave speech under competitive conditions. Journal of the Acoustical Society of America, 128, 804–817.

83 Roberts, B., Summers, R. J., & Bailey, P. J. (2015). Acoustic source characteristics, across‐formant integration, and speech intelligibility under competitive conditions. Journal of Experimental Psychology: Human Perception and Performance Psychology, 41, 680–691.

84 Rosen, S. M., Fourcin, A. J., & Moore, B. C. J. (1981). Voice pitch as an aid to lipreading. Nature, 291, 150–152.

85 Rosen, S. M., & Iverson, P. (2007). Constructing adequate non‐speech analogues: What is special about speech anyway? Developmental Science, 10, 169–171.

86 Rossing, T. D. (1990). The science of sound. Reading, MA: Addison‐Wesley.

87 Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8‐month‐old infants. Science, 274, 1926–1928.

88 Seidenberg, M. S., MacDonald, M. C., & Saffran, J. R. (2002). Does grammar start where statistics stop? Science, 298, 553–554.

89 Shannon, R. V., Zeng, F., Kamath, V., et al. (1995). Speech recognition with primarily temporal cues. Science, 270, 303–304.

90 Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416, 87–90.

91 Steiger, H., & Bregman, A. S. (1982). Competition among auditory streaming, dichotic fusion, and diotic fusion. Perception & Psychophysics, 32, 153–162.

92 Stevens, K. N. (1998). Acoustic phonetics. Cambridge, MA: MIT Press.

93 Stevens, K. N., & Blumstein, S. E. (1981). The search for invariant acoustic correlates of phonetic features. In P. D. Eimas & J. L. Miller (Eds), Perspectives on the study of speech (pp. 1–38). Hillsdale, NJ: Lawrence Erlbaum.

94 Stevens, K. N., & House, A. S. (1961). An acoustical theory of vowel production and some of its implications. Journal of Speech and Hearing Research, 4, 303–320.

95 Sumby, W. H., & Pollack, I. (1954). Visual contribution to speech intelligibility in noise. Journal of the Acoustical Society of America, 26, 212–215.

96 Summerfield, Q. (1992). Roles of harmonicity and coherent frequency modulation in auditory grouping. In M. E. H. Schouten (Ed.), The auditory processing of speech: From sounds to words (pp. 157–166). Berlin: Mouton de Gruyter.

97 Svirsky, M. A., Robbins, A. M., Kirk, K. I., et al. (2000). Language development in profoundly deaf children with cochlear implants. Psychological Science, 11, 153–158.

98 Toscano, J. C., & McMurray, B. (2010). Cue integration with categories: Weighting acoustic cues in speech using unsupervised learning and distributional statistics. Cognitive Science, 34, 434–464.

99 Vouloumanos, A., & Werker, J. F. (2007). Listening to language at birth: Evidence for a bias for speech in neonates. Developmental Science, 10, 159–171.

100 Warren, R. M., Obusek, C. J., Farmer, R. M., & Warren, R. P. (1969). Auditory sequence: confusion of patterns other than speech or music. Science, 164, 586–587.

101 Wertheimer, M. (1923/1938). “Laws of organization in perceptual forms” (trans. of “Unsuchungen zur Lehre von der Gestalt”). In W. D. Ellis (Ed.), A sourcebook of gestalt psychology (pp. 71–88). London: Routledge & Kegan Paul.

102 Whalen, D. H., & Liberman, A. M. (1987). Speech perception takes precedence over nonspeech perception. Science, 237, 169–171.

103 Whalen, D. H., & Liberman, A. M. (1996). Limits on phonetic integration in duplex perception. Perception & Psychophysics, 58, 857–870.

104 Zevin, J. D., Yang, J., Skipper, J. I., & McCandliss, B. D. (2010). Domain general change detection accounts for “dishabituation” effects in temporal‐parietal regions in functional magnetic resonance imaging studies of speech perception. Journal of Neuroscience, 30, 1110–1117.

The Handbook of Speech Perception

Подняться наверх