Читать книгу The Handbook of Speech Perception - Группа авторов - Страница 69

REFERENCES

Оглавление

1 Békésy, G. v. (1949). The structure of the middle ear and the hearing of one’s own voice by bone conduction. Journal of the Acoustical Society of America, 21(3), 217–232.

2 Bell‐Berti, F., Raphael, L. J., Pisoni, D. B., & Sawusch, J. R. (1979). Some relationships between speech production and perception. Phonetica, 36(6), 373–383.

3 Bertram, R., Daou, A., Hyson, R. L., et al. (2014). Two neural streams, one voice: Pathways for theme and variation in the songbird brain. Neuroscience, 277, 806–817.

4  Best, C. T., Goldstein, L. M., Nam, H., & Tyler, M. D. (2016). Articulating what infants attune to in native speech. Ecological Psychology, 28(4), 216–261.

5 Binnie, C. A., Daniloff, R. G., & Buckingham, H. W., Jr. (1982). Phonetic disintegration in a five‐year‐old following sudden hearing loss. Journal of Speech and Hearing Disorders, 47(2), 181–189.

6 Borden, G. J. (1979). An interpretation of research on feedback interruption in speech. Brain and Language, 7(3), 307–319.

7 Bridgeman, B. (2007). Efference copy and its limitations. Computers in Biology and Medicine, 37(7), 924–929.

8 Brown, R. (1958). Words and things. New York: Free Press.

9 Bruderer, A. G., Danielson, D. K., Kandhadai, P., & Werker, J. F. (2015). Sensorimotor influences on speech perception in infancy. Proceedings of the National Academy of Sciences of the United States of America, 112(44), 13531–13536.

10 Brumm, H., & Zollinger, S. A. (2011). The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour, 148(11–13), 1173–1198.

11 Burnett, T. A., Freedland, M. B., Larson, C. R., & Hain, T. C. (1998). Voice F0 responses to manipulations in pitch feedback. Journal of the Acoustical Society of America, 103(6), 3153–3161.

12 Chang, E. F., Niziolek, C. A., Knight, R. T., et al. (2013). Human cortical sensorimotor network underlying feedback control of vocal pitch. Proceedings of the National Academy of Sciences of the United States of America, 110(7), 2653–2658.

13 Chase, R. A., Sutton, S., First, D., & Zubin, J. (1961). A developmental study of changes in behavior under delayed auditory feedback. Journal of Genetic Psychology, 99(1), 101–112.

14 Choi, D., Bruderer, A. & Werker, J. (2019). Sensorimotor influences on speech perception in pre‐babbling infants: Replication and extension of Bruderer et al. (2015). Psychonomic Bulletin & Review, 26, 1388–1399.

15 Christoffels, I. K., Formisano, E., & Schiller, N. O. (2007). Neural correlates of verbal feedback processing: An fMRI study employing overt speech. Human Brain Mapping, 28(9), 868–879.

16 Cooper, A., Fecher, N., & Johnson, E. K. (2018). Toddlers’ comprehension of adult and child talkers: Adult targets versus vocal tract similarity. Cognition, 173, 16–20.

17 Cooper, W. E. (1974). Selective adaptation for acoustic cues of voicing in initial stops. Journal of Phonetics, 2(4), 303–313.

18 Cooper, W. E., & Lauritsen, M. R. (1974). Feature processing in the perception and production of speech. Nature, 252(5479), 121–123.

19 Cowie, R., & Douglas‐Cowie, E. (1992). Postlingually acquired deafness. New York: Mouton de Gruyter.

20 Cowie, R., Douglas‐Cowie, E., & Kerr, A. G. (1982). A study of speech deterioration in post‐lingually deafened adults. Journal of Laryngology & Otology, 96(2), 101–112.

21 Crapse, T. B., & Sommer, M. A. (2008). Corollary discharge across the animal kingdom. Nature Reviews Neuroscience, 9(8), 587–600.

22 Creutzfeldt, O., Ojemann, G., & Lettich, E. (1989). Neuronal activity in the human lateral temporal lobe. Experimental Brain Research, 77(3), 451–475.

23 Cynx, J., Lewis, R., Tavel, B., & Tse, H. (1998). Amplitude regulation of vocalizations in noise by a songbird, Taeniopygia guttata. Animal Behaviour, 56(1), 107–113.

24 Cynx, J., & von Rad, U. (2001). Immediate and transitory effects of delayed auditory feedback on bird song production. Animal Behaviour, 62(2), 305–312.

25 de Boysson‐Bardies, B., Sagart, L., & Durand, C. (1984). Discernible differences in the babbling of infants according to target language. Journal of Child Language, 11(1), 1–15.

26 de Boysson‐Bardies, B., & Vihman, M. M. (1991). Adaptation to language: Evidence from babbling and first words in four languages. Language, 67(2), 297–319.

27  Dell, G. S., & Chang, F. (2014). The P‐chain: Relating sentence production and its disorders to comprehension and acquisition. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634), 20120394.

28 DePaolis, R. A., Vihman, M. M., & Keren‐Portnoy, T. (2011). Do production patterns influence the processing of speech in prelinguistic infants? Infant Behavior & Development, 34(4), 590–601.

29 Dhawale, A. K., Smith, M., & Ölveczky, B. (2017). The role of variability in motor learning. Annual Review of Neuroscience, 40, 479–498.

30 Eliades, S. J., & Wang, X. (2003). Sensory‐motor interaction in the primate auditory cortex during self‐initiated vocalizations. Journal of Neurophysiology, 89(4), 2194–2207.

31 Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature, 453(7198), 1102–1106.

32 Fox, R. A. (1982). Individual variation in the perception of vowels: Implications for a perception–production link. Phonetica, 39(1), 1–22.

33 Franken, M. K., Acheson, D. J., McQueen, J. M., et al. (2017). Individual variability as a window on production–perception interactions in speech motor control. Journal of the Acoustical Society of America, 142(4), 2007–2018.

34 Franken, M. K., Acheson, D. J., McQueen, J. M., et al. (2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25(4), 1458–1467.

35 Frieda, E. M., Walley, A. C., Flege, J. E., & Sloane, M. E. (2000). Adults’ perception and production of the English vowel /i/. Journal of Speech, Language, and Hearing Research, 43(1), 129–143.

36 Garrod, S., & Pickering, M. J. (2004). Why is conversation so easy?. Trends in cognitive sciences, 8(1), 8–11.

37 Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7(2), 217–229.

38 Guenther, F. H. (1995). Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychological Review, 102(3), 594–621.

39 Guenther, F. H. (2016). Neural control of speech. Cambridge, MA: MIT Press.

40 Guenther, F. H., Ghosh, S. S., & Tourville, J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96(3), 280–301.

41 Guenther, F. H., & Hickok, G. (2015). Role of the auditory system in speech production. In M. J. Aminoff, F. Boller, & D. F. Swaab (Eds), Handbook of clinical neurology: Vol. 129. The human auditory system: Fundamental organization and clinical disorders (pp. 16–175). Amsterdam: Elsevier.

42 Harris, C. & Wolpert, D. (1998). Signal‐dependent noise determines motor planning. Nature, 394, 780–784.

43 Hashimoto, Y., & Sakai, K. L. (2003). Brain activations during conscious self‐monitoring of speech production with delayed auditory feedback: An fMRI study. Human Brain Mapping, 20(1), 22–28.

44 Heinks‐Maldonado, T. H., Mathalon, D. H., Gray, M., & Ford, J. M. (2005). Fine‐tuning of auditory cortex during speech production. Psychophysiology, 42(2), 180–190.

45 Hickok, G. (2012). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13(2), 135–145.

46 Hickok, G. (2014). The myth of mirror neurons: The real neuroscience of communication and cognition. New York: W. W. Norton.

47 Hickok, G., Holt, L. L., & Lotto, A. J. (2009). Response to Wilson: What does motor cortex contribute to speech perception? Trends in Cognitive Sciences, 13(8), 330–331.

48 Houde, J. F., & Chang, E. F. (2015). The cortical computations underlying feedback control in vocal production. Current Opinion in Neurobiology, 33, 174–181.

49 Houde, J. F., & Jordan, M. I. (1998). Sensorimotor adaptation in speech production. Science, 279(5354), 1213–1216.

50 Houde, J. F., & Nagarajan, S. S. (2011). Speech production as state feedback control. Frontiers in Human Neuroscience, 5, 82.

51 Houde, J. F., Nagarajan, S. S., Sekihara, K., & Merzenich, M. M. (2002). Modulation of the auditory cortex during speech: an MEG study. Journal of Cognitive Neuroscience, 14(8), 1125–1138.

52 Howard, I. S., & Messum, P. (2011). Modeling the development of pronunciation in infant speech acquisition. Motor Control, 15(1), 85–117.

53 Howard, I. S., & Messum, P. (2014). Learning to pronounce first words in three languages: An investigation of caregiver and infant behavior using a computational model of an infant. PLOS One, 9(10), e110334.

54 Huizenga, T. (2016). Killing me sharply with her song”: The improbable story of Florence Foster Jenkins. NPR, August 10. Retrieved August 4, 2020, from www.npr.org/sections/deceptivecadence/2016/08/10/488724807/killing‐me‐sharply‐with‐her‐song‐the‐improbable‐story‐of‐florence‐foster‐jenkins.

55 Jones, P. D., & Holding, D. H. (1975). Extremely long‐term persistence of the McCollough effect. Journal of Experimental Psychology: Human Perception and Performance, 1(4), 323–327.

56 Jones, J. A., & Keough, D. (2008). Auditory‐motor mapping for pitch control in singers and nonsingers. Experimental Brain Research, 190(3), 279–287.

57 Kawato, M. (1990) Computational schemes and neural network models for formation and control of multijoint arm trajectory. In W. T. Miller III, R. S. Sutton, & P. J. Werbos (Eds.), Neural networks for control (pp. 197–228). Cambridge, MA: MIT Press.

58 Kern, S., Davis, B., & Zink, I. (2009). From babbling to first words in four languages. In F. d’Errico & J. M. Hombert (Eds), Becoming eloquent: Advances in the emergence of language, human cognition, and modern cultures. Philadelphia: John Benjamins.

59 Kim, M., Horton, W. S., & Bradlow, A. R. (2011). Phonetic convergence in spontaneous conversations as a function of interlocutor language distance. Laboratory Phonology, 2(1), 125–156.

60 Kittredge, A. K., & Dell, G. S. (2016). Learning to speak by listening: Transfer of phonotactics from perception to production. Journal of Memory and Language, 89, 8–22.

61 Kobayasi, K. I., & Okanoya, K. (2003). Context‐dependent song amplitude control in Bengalese finches. Neuroreport, 14(3), 521–524.

62 Lametti, D. R., Krol, S. A., Shiller, D. M., & Ostry, D. J. (2014). Brief periods of auditory perceptual training can determine the sensory targets of speech motor learning. Psychological Science, 25(7), 1325–1336.

63 Lane, H., & Webster, J. W. (1991). Speech deterioration in postlingually deafened adults. Journal of the Acoustical Society of America, 89(2), 859–866.

64 Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112–131). New York: Wiley.

65 Leder, S. B., Spitzer, J. B., & Kirchner, J. C. (1987). Speaking fundamental frequency of postlingually profoundly deaf adult men. Annals of Otology, Rhinology & Laryngology, 96(3), 322–324.

66 Lee, C. C., Jhang, Y., Chen, L. M., et al. (2017). Subtlety of ambient‐language effects in babbling: A study of English‐and Chinese‐learning infants at 8, 10, and 12 months. Language Learning and Development, 13(1), 100–126.

67  Lee, S. A. S., Davis, B., & MacNeilage, P. (2010). Universal production patterns and ambient language influences in babbling: A cross‐linguistic study of Korean‐ and English‐learning infants. Journal of Child Language, 37(2), 293–318.

68 Leonard, M. L., & Horn, A. G. (2005). Ambient noise and the design of begging signals. Proceedings of the Royal Society B: Biological Sciences, 272(1563), 651–656.

69 Levelt, W. J. (1983). Monitoring and self‐repair in speech. Cognition, 14(1), 41–104.

70 Levelt, W. J. (2013). A history of psycholinguistics: The pre‐Chomskyan era. Oxford: Oxford University Press.

71 Liberman, A. M. (1996). Speech: A special code. Cambridge, MA: MIT press.

72 Lombard, E. (1911). Le signe de l’élévation de la voix. Annales des Maladies de l’Oreille et du Larynx, 37, 101–119.

73 Lombardino, A. J., & Nottebohm, F. (2000). Age at deafening affects the stability of learned song in adult male zebra finches. Journal of Neuroscience, 20(13), 5054–5064.

74 MacDonald, E. N., Goldberg, R., & Munhall, K. G. (2010) Compensation in response to real‐time formant perturbations of different magnitude. Journal of the Acoustical Society of America, 127, 1059–1068.

75 MacDonald, E. N., Johnson, E. K., Forsythe, J., et al. (2012). Children’s development of self‐regulation in speech production. Current Biology, 22(2), 113–117.

76 MacDonald, E. N., Purcell, D. W., & Munhall, K. G. (2011). Probing the independence of formant control using altered auditory feedback. Journal of the Acoustical Society of America, 129(2), 955–965.

77 Mahl, G. F. (1972). People talking when they can’t hear their voices. In A. W. Siegman & B. Pope (Eds), Studies in Dyadic Communication (pp. 211–264). Oxford: Pergamon.

78 Majorano, M., Vihman, M. M., & DePaolis, R. A. (2014). The relationship between infants’ production experience and their processing of speech. Language Learning and Development, 10(2), 179–204.

79 McGarr, N. S., & Harris, K. S. (1980). Articulatory control in a deaf speaker. Haskins Laboratories Status Report on Speech Research, 307–330. Retrieved August 4, 2020, from http://www.haskins.yale.edu/sr/SR063/SR063_18.pdf.

80 Messum, P., & Howard, I. S. (2015). Creating the cognitive form of phonological units: The speech sound correspondence problem in infancy could be solved by mirrored vocal interactions rather than by imitation. Journal of Phonetics, 53, 125–140.

81 Meyer, A. S., Huettig, F., & Levelt, W. J. (2016). Same, different, or closely related: What is the relationship between language production and comprehension? Journal of Memory and Language, 89, 1–7.

82 Miller, C. T., & Wang, X. (2006). Sensory‐motor interactions modulate a primate vocal behavior: Antiphonal calling in common marmosets. Journal of Comparative Physiology A, 192(1), 27–38.

83 Mitsuya, T., MacDonald, E. N., & Munhall, K. G. (2014). Temporal control and compensation for perturbed voicing feedback. Journal of the Acoustical Society of America, 135(5), 2986–2994.

84 Mitsuya, T., Munhall, K. G., & Purcell, D. W. (2017). Modulation of auditory‐motor learning in response to formant perturbation as a function of delayed auditory feedback. Journal of the Acoustical Society of America, 141(4), 2758–2767.

85 Muller‐Preuss, P., & Ploog, D. (1981). Inhibition of auditory cortical neurons during phonation. Brain Research, 215(1–2), 61–76.

86 Munhall, K. G., MacDonald, E. N., Byrne, S. K., & Johnsrude, I. (2009). Talkers alter vowel production in response to real‐time formant perturbation even when instructed not to compensate. Journal of the Acoustical Society of America, 125(1), 384–390.

87 Newman, R. S. (2003). Using links between speech perception and speech production to evaluate different acoustic metrics: A preliminary report. Journal of the Acoustical Society of America, 113(5), 2850–2860.

88 Nordeen, K. W., & Nordeen, E. J. (2010). Deafening‐induced vocal deterioration in adult songbirds is reversed by disrupting a basal ganglia‐forebrain circuit. Journal of Neuroscience, 30(21), 7392–7400.

89 Oller, D. K., & Eilers, R. E. (1988). The role of audition in infant babbling. Child Development, 59(2), 441–449.

90 Osberger, M. J., & McGarr, N. S. (1982). Speech production characteristics of the hearing impaired. In N. J. Lass (Ed.), Speech and language: Advances in basic research and practice (pp. 221–284). New York: Academic Press.

91 Pardo, J. S., Gibbons, R., Suppes, A., & Krauss, R. M. (2012). Phonetic convergence in college roommates. Journal of Phonetics, 40(1), 190–197.

92 Parks, S. E., Johnson, M., Nowacek, D., & Tyack, P. L. (2011). Individual right whales call louder in increased environmental noise. Biology Letters, 7(1), 33–35.

93 Peebles, D., & Cooper, R. P. (2015). Thirty years after Marr’s vision: Levels of analysis in cognitive science. Topics in Cognitive Science, 7(2), 187–190.

94 Perkell, J. S. (2012). Movement goals and feedback and feedforward control mechanisms in speech production. Journal of Neurolinguistics, 25(5), 382–407.

95 Perkell, J. S., Guenther, F. H., Lane, H., et al. (2004). The distinctness of speakers’ productions of vowel contrasts is related to their discrimination of the contrasts. Journal of the Acoustical Society of America, 116(4), 2338–2344.

96 Petkov, C. I., & Jarvis, E. (2012). Birds, primates, and spoken language origins: Behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4, 12.

97 Pfenning, A. R., Hara, E., Whitney, O., et al. (2014). Convergent transcriptional specializations in the brains of humans and song‐learning birds. Science, 346(6215), 1256846.

98 Pick, H. L., Siegel, G. M., Fox, P. W., et al. (1989). Inhibiting the Lombard effect. Journal of the Acoustical Society of America, 85(2), 894–900.

99 Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(4), 329–347.

100 Plant, G. (1984). The effects of an acquired profound hearing loss on speech production: A case study. British Journal of Audiology, 18(1), 39–48.

101 Purcell, D. W., & Munhall, K. G. (2006). Compensation following real‐time manipulation of formants in isolated vowels. Journal of the Acoustical Society of America, 119(4), 2288–2297.

102 Scheerer, N. E., Jacobson, D. S., & Jones, J. A. (2016). Sensorimotor learning in children and adults: Exposure to frequency‐altered auditory feedback during speech production. Neuroscience, 314, 106–115.

103 Scheerer, N. E., Jacobson, D. S., & Jones, J. A. (2019). Sensorimotor control of vocal production in early childhood. Journal of Experimental Psychology: General, 149(6), 1071–1077.

104 Scheerer, N. E., Liu, H., & Jones, J. A. (2013). The developmental trajectory of vocal and event‐related potential responses to frequency‐altered auditory feedback. European Journal of Neuroscience, 38(8), 3189–3200.

105 Schmidt, R. A. (1980). Past and future issues in motor programming. Research Quarterly for Exercise and Sport, 51(1), 122–140.

106 Shiller, D. M., Sato, M., Gracco, V. L., & Baum, S. R. (2009). Perceptual recalibration of speech sounds following speech motor learning. Journal of the Acoustical Society of America, 125(2), 1103–1113.

107  Siegel, G. M., Pick, H. L., Olsen, M. G., & Sawin, L. (1976). Auditory feedback on the regulation of vocal intensity of preschool children. Developmental Psychology, 12(3), 255–261.

108 Sinnott, J. M., Stebbins, W. C., & Moody, D. B. (1975). Regulation of voice amplitude by the monkey. Journal of the Acoustical Society of America, 58(2), 412–414.

109 Skipper, J. I., Devlin, J. T., & Lametti, D. R. (2017). The hearing ear is always found close to the speaking tongue: Review of the role of the motor system in speech perception. Brain and Language, 164, 77–105.

110 Sober, S. J., & Brainard, M. S. (2009). Adult birdsong is actively maintained by error correction. Nature Neuroscience, 12(7), 927–931.

111 Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 43(6), 482–489.

112 Takahashi, D. Y., Fenley, A. R., & Ghazanfar, A. A. (2016). Early development of turn‐taking with parents shapes vocal acoustics in infant marmoset monkeys. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 20150370.

113 Terband, H., Van Brenk, F., & van Doornik‐van der Zee, A. (2014). Auditory feedback perturbation in children with developmental speech sound disorders. Journal of Communication Disorders, 51, 64–77.

114 Thevenin, D. M., Eilers, R. E., Oller, D. K., & Lavoie, L. (1985). Where’s the drift in babbling drift? A cross‐linguistic study. Applied Psycholinguistics, 6(1), 3–15.

115 Tourville, J. A., Reilly, K. J., & Guenther, F. H. (2008). Neural mechanisms underlying auditory feedback control of speech. NeuroImage, 39(3), 1429–1443.

116 Vihman, M. M. (1991). Ontogeny of phonetic gestures: Speech production. In I. Mattingly & M. Studdert‐Kennedy (Eds), Modularity and the motor theory of speech perception: Proceedings of a conference to honor Alvin M. Liberman (pp. 69–84). Hillsdale, NJ: Lawrence Erlbaum.

117 Vihman, M. M. (1993). Variable paths to early word production. Journal of Phonetics, 21(1–2), 61–82.

118 Vihman, M. M. (1996). Phonological development: The origins of language in the child. Oxford: Blackwell.

119 Villacorta, V. M., Perkell, J. S., & Guenther, F. H. (2007). Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception. Journal of the Acoustical Society of America, 122(4), 2306–2319.

120 von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften, 37(20), 464–476.

121 Waldstein, R. S. (1990). Effects of postlingual deafness on speech production: Implications for the role of auditory feedback. Journal of the Acoustical Society of America, 88(5), 2099–2114.

122 Whalen, D. H., Levitt, A. G., & Goldstein, L. M. (2007). VOT in the babbling of French‐and English‐learning infants. Journal of Phonetics, 35(3), 341–352.

123 Whalen, D. H., Levitt, A. G., & Wang, Q. (1991). Intonational differences between the reduplicative babbling of French‐ and English‐learning infants. Journal of Child Language, 18(3), 501–516.

124 Yates, A. J. (1963). Recent empirical and theoretical approaches to the experimental manipulation of speech in normal subjects and in stammerers. Behaviour Research and Therapy, 1(2‐4), 95–119.

125 Zarate, J. M., & Zatorre, R. J. (2008). Experience‐dependent neural substrates involved in vocal pitch regulation during singing. NeuroImage, 40(4), 1871–1887.

126 Zimmermann, G., & Rettaliata, P. (1981). Articulatory patterns of an adventitiously deaf speaker: Implications for the role of auditory information in speech production. Journal of Speech, Language, and Hearing Research, 24(2), 169–178.

The Handbook of Speech Perception

Подняться наверх