Читать книгу The Handbook of Speech Perception - Группа авторов - Страница 83
REFERENCES
Оглавление1 Andruski, J. E., Blumstein, S. E., & Burton, M. (1994). The effect of subphonetic differences on lexical access. Cognition, 52(3), 163–187.
2 Apfelbaum, K. S., Blumstein, S. E., & McMurray, B. (2011). Semantic priming is affected by real‐time phonological competition: Evidence for continuous cascading systems. Psychonomic Bulletin & Review, 18(1), 141–149.
3 Arsenault, J. S., & Buchsbaum, B. R. (2015). Distributed neural representations of phonological features during speech perception. Journal of Neuroscience, 35(2), 634–642.
4 Bailey, T. M., & Hahn, U. (2005). Phoneme similarity and confusability. Journal of Memory and Language, 52(3), 339–362.
5 Blumstein, S. E., Baker, E., & Goodglass, H. (1977). Phonological factors in auditory comprehension in aphasia. Neuropsychologia, 15(1), 19–30.
6 Blumstein, S., & Cooper, W. (1972). Identification versus discrimination of distinctive features in speech perception. Quarterly Journal of Experimental Psychology, 24(2), 207–214.
7 Blumstein, S. E., Myers, E. B., & Rissman, J. (2005). The perception of voice onset time: An fMRI investigation of phonetic category structure. Journal of Cognitive Neuroscience, 17(9), 1353–1366.
8 Blumstein, S. E., & Stevens, K. N. (1979). Acoustic invariance in speech production: Evidence from measurements of the spectral characteristics of stop consonants. Journal of the Acoustical Society of America, 66(4), 1001–1017.
9 Blumstein, S. E., & Stevens, K. N. (1980). Perceptual invariance and onset spectra for stop consonants in different vowel environments. Journal of the Acoustical Society of America, 67(2), 648–662.
10 Blumstein, S. E., & Stevens, K. N. (1981). Phonetic features and acoustic invariance in speech. Cognition, 10(1), 25–32.
11 Carney, A. E., Widin, G. P., & Viemeister, N. F. (1977). Noncategorical perception of stop consonants differing in VOT. Journal of the Acoustical Society of America, 62(4), 961–970.
12 Chang, S., & Blumstein, S. E. (1981). The role of onsets in perception of stop place of articulation: Effects of spectral and temporal discontinuity. Journal of the Acoustical Society of America, 70(1), 39–44.
13 Cheung, C., Hamilton, L. S., Johnson, K., & Chang, E. F. (2016). The auditory representation of speech sounds in human motor cortex. eLife, 5, e12577.
14 Connine, C. M., Blasko, D. G., & Titone, D. (1993). Do the beginnings of spoken words have a special status in auditory word recognition? Journal of Memory and Language, 32(2), 193–210.
15 Cooper, Franklin S. (1955). Some instrumental aids to research on speech. In Report of the Fourth Annual Round Table Meeting on Linguistics and Language Teaching (pp. 46–53). Washington, DC: Institute of Languages and Linguistics, Georgetown University.
16 Correia, J. M., Jansma, B. M. B., & Bonte, M. (2015). Decoding articulatory features from fMRI responses in dorsal speech regions. Journal of Neuroscience, 35(45), 15015–15025.
17 D’Ausilio, A., Craighero, L., & Fadiga, L. (2012). The contribution of the frontal lobe to the perception of speech. Journal of Neurolinguistics, 25(5), 328–335.
18 Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15, 399–402.
19 Fowler, C. A. (1986). An event approach to the study of speech perception from a direct‐realist perspective. Journal of Phonetics, 14(1), 3–28.
20 Fowler, C. A., Shankweiler, D., & Studdert‐Kennedy, M. (2016). Perception of the speech code revisited: Speech is alphabetic after all. Psychological Review, 123(2), 125–150.
21 Frye, R. E., Fisher, J. M., Coty, A., et al. (2007). Linear coding of voice onset time. Journal of Cognitive Neuroscience, 19(9), 1476–1487.
22 Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13(3), 361–377.
23 Gaskell, M. G., & Marslen‐Wilson, W. D. (1999). Ambiguity, competition, and blending in spoken word recognition. Cognitive Science, 23, 439–462.
24 Gerken, L., Murphy, W. D., & Aslin, R. N. (1995). Three‐and four‐year‐olds’ perceptual confusions for spoken words. Attention, Perception, & Psychophysics, 57(4), 475–486.
25 Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105(2), 251–279.
26 Goldinger, S. D., Luce, P. A., & Pisoni, D. B. (1989). Priming lexical neighbors of spoken words: Effects of competition and inhibition. Journal of Memory and Language, 28, 501–518.
27 Greenberg, J. H., & Jenkins, J. J. (1964). Studies in the psychological correlates of the sound system of American English. Word, 20(2), 157–177.
28 Guediche, S., Minicucci, D., Shih, P., & Blumstein, S. E. (2018). The neural system is sensitive to abstract properties of speech. Unpublished paper.
29 Guenther, F. H., Nieto‐Castanon, A., Ghosh, S. S., & Tourville, J. A. (2004). Representation of sound categories in auditory cortical maps. Journal of Speech, Language, and Hearing Research, 47(1), 46–57.
30 Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.
31 Iverson, P., & Kuhl, P. K. (1996). Influences of phonetic identification and category goodness on American listeners’ perception of/r/and/l/. Journal of the Acoustical Society of America, 99(2), 1130–1140.
32 Jakobson, R., Fant, C. G., & Halle, M. (1951). Preliminaries to speech analysis: The distinctive features and their correlates. Cambridge, MA: MIT Press.
33 Joanisse, M. F., Zevin, J. D., & McCandliss, B. D. (2007). Brain mechanisms implicated in the preattentive categorization of speech sounds revealed using fMRI and a short‐interval habituation trial paradigm. Cerebral Cortex, 17(9), 2084–2093.
34 Johnson, A. A., Reidy, P. F., & Edwards, J. R. (2018). Quantifying robustness of the/t/–/k/contrast using a single, static spectral feature. Journal of the Acoustical Society of America, 144(2), EL105–111.
35 Kewley‐Port, D. (1983). Time‐varying features as correlates of place of articulation in stop consonants. Journal of the Acoustical Society of America, 73(1), 322–335.
36 Koenig, W., Dunn, H. K., & Lacy, L. Y. (1946). The sound spectrograph. Journal of the Acoustical Society of America, 17, 19–49.
37 Kurowski, K., & Blumstein, S. E. (1984). Perceptual integration of the murmur and formant transitions for place of articulation in nasal consonants. Journal of the Acoustical Society of America, 76(2), 383–390.
38 Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert‐Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–461.
39 Liberman, A. M., Delattre, P., & Cooper, F. S. (1952). The role of selected stimulus‐variables in the perception of the unvoiced stop consonants. American Journal of Psychology, 65, 497–516.
40 Lisker, L. (1986). “Voicing” in English: A catalogue of acoustic features signaling/b/versus/p/in trochees. Language and Speech, 29(1), 3–11.
41 Lotto, A. J., Hickok, G. S., & Holt, L. L. (2009). Reflections on mirror neurons and speech perception. Trends in Cognitive Sciences, 13(3), 110–114.
42 Luce, P. A. (1986). Neighborhoods of words in the mental lexicon. Unpublished doctoral dissertation. Indiana University, Bloomington.
43 Luce, P. A., Goldinger, S. D., Auer, E. T., & Vitevitch, M. S. (2000). Phonetic priming, neighborhood activation, and PARSYN. Attention, Perception, & Psychophysics, 62(3), 615–625.
44 Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. Ear and Hearing, 19, 1–36.
45 Mack, M., & Blumstein, S. E. (1983). Further evidence of acoustic invariance in speech production: The stop–glide contrast. Journal of the Acoustical Society of America, 73(5), 1739–1750.
46 McClelland, J. L. (1979). On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review, 86(4), 287–330.
47 McClelland, J. L., & Elman, J. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1–86.
48 McClelland, J. L., & Rumelhart, D. (1986). Parallel distributed processing: Vol. 2. Psychological and biological models. Cambridge, MA: MIT Press.
49 McMurray, B., & Jongman, A. (2011). What information is necessary for speech categorization? Harnessing variability in the speech signal by integrating cues computed relative to expectations. Psychological Review, 118(2), 219–246.
50 McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2002). Gradient effects of within‐category phonetic variation on lexical access. Cognition, 86(2), B33–B42.
51 McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2009). Within‐category VOT affects recovery from “lexical” garden‐paths: Evidence against phoneme‐level inhibition. Journal of Memory and Language, 60(1), 65–91.
52 Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 1006–1010.
53 Milberg, W., Blumstein, S., & Dworetzky, B. (1988). Phonological factors in lexical access: Evidence from an auditory lexical decision task. Bulletin of the Psychonomic Society, 26(4), 305–308.
54 Miller, G. A., & Nicely, P. E. (1955). An analysis of perceptual confusions among some English consonants. Journal of the Acoustical Society of America, 27(2), 338–352.
55 Miller, J. L. (1997). Internal structure of phonetic categories. Language and Cognitive Processes, 12, 865–869.
56 Misiurski, C., Blumstein, S. E., Rissman, J., & Berman, D. (2005). The role of lexical competition and acoustic–phonetic structure in lexical processing: Evidence from normal subjects and aphasic patients. Brain and Language, 93(1), 64–78.
57 Mottonen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute to categorical perception of speech sounds. Journal of Neuroscience, 29, 9819–9825.
58 Myers, E. B., Blumstein, S. E., Walsh, E., & Eliassen, J. (2009). Inferior frontal regions underlie the perception of phonetic category invariance. Psychological Science, 20(7), 895–903.
59 Nossair, Z. B., & Zahorian, S. A. (1991). Dynamic spectral shape features as acoustic correlates for initial stop consonants. Journal of the Acoustical Society of America, 89(6), 2978–2991.
60 Pisoni, D. B., & Tash, J. (1974). Reaction times to comparisons within and across phonetic categories. Perception & Psychophysics, 15, 289–290.
61 Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62(2), 816–847.
62 Samuel, A. G. (1982). Phonetic prototypes. Attention, Perception, & Psychophysics, 31(4), 307–314.
63 Schomers, M. R., & Pulvermüller, F. (2016). Is the sensorimotor cortex relevant for speech perception and understanding? An integrative view. Frontiers in Human Neuroscience, 10, art. 435.
64 Scott, S. K., & Johnsrude, I. S. (2003). The neuroanatomical and functional organization of speech perception. Trends in Neurosciences, 26(2), 100–107.
65 Shinn, P., & Blumstein, S. E. (1984). On the role of the amplitude envelope for the perception of [b] and [w]. Journal of the Acoustical Society of America, 75(4), 1243–1252.
66 Stevens, K. N. (2002). Toward a model for lexical access based on acoustic landmarks and distinctive features. Journal of the Acoustical Society of America, 111(4), 1872–1891.
67 Stevens, K. N., & Blumstein, S. E. (1978). Invariant cues for place of articulation in stop consonants. Journal of the Acoustical Society of America, 64(5), 1358–1368.
68 Stevens, K. N., & Blumstein, S. E. (1981). The search for invariant acoustic correlates of phonetic features. In P. D. Eimas & J. L. Miller (Eds.), Perspectives on the study of speech (pp. 1–38). Hillsdale, NJ: Lawrence Erlbaum.
69 Studdert‐Kennedy, M., & Whalen, D. H. (1999). A brief history of speech perception research in the United States [1989]. In J. J. Ohala, A. J. Bronstein, M. Grazia Busà, et al. (Eds.), A guide to the history of the phonetic sciences in the United States (pp. 21–25). Berkeley: University of California Press.
70 Wang, M. D., & Bilger, R. C. (1973). Consonant confusions in noise: A study of perceptual features. Journal of the Acoustical Society of America, 54(5), 1248–1266.
71 White, K. S., & Morgan, J. L. (2008). Sub‐segmental detail in early lexical representations. Journal of Memory and Language, 59(1), 114–132.
72 White, K. S., Yee, E., Blumstein, S. E., & Morgan, J. L. (2013). Adults show less sensitivity to phonetic detail in unfamiliar words, too. Journal of Memory and Language, 68(4), 362–378.
73 Wickelgren, W. A. (1965). Distinctive features and errors in short‐term memory for English vowels. Journal of the Acoustical Society of America, 38(4), 583–588.
74 Wickelgren, W. A. (1966). Distinctive features and errors in short‐term memory for English consonants. Journal of the Acoustical Society of America, 39(2), 388–398.
75 Wilson, S. M., & Iacoboni, M. (2006). Neural responses to non‐native phonemes varying in producibility: Evidence for the sensorimotor nature of speech perception. Neuroimage, 33(1), 316–325.
76 Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7, 701–702.