Читать книгу Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов - Страница 44
REFERENCES
Оглавление1 Acuña, M. H., Ogilvie, K. W., Baker, D. N., Curtis, S. A., Fairfield, D. H., & Mish, W. H. (1997). The Global Geospace Science Program and its investigations. Space Science Reviews, 71, 5. doi:10.1007/BF00751323
2 Akasofu, S.‐I. (1964). The development of the auroral substorm. Planetary and Space Science, 12, 273–282. doi: 10.1016/0032‐0633(64)90151‐5
3 Alfvén, H. (1942). Existence of electromagnetic‐hydrodynamic waves. Nature, 150, 405. doi: 10.1038/150405d0
4 Atkinson, G. (1967a). An approximate flow equation for geomagnetic flux tubes and its application to polar substorms. Journal of Geophysical Research, 72, 5373–5382.
5 Atkinson, G. (1967b). Polar magnetic substorms. Journal of Geophysical Research, 72, 1491–1494. doi: 10.1029/JZ072i005p01491
6 Axford, W. I., & Hines, C. O. (1961). A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433–1464.
7 Baker, K. B., Rodger, A. S., & Lu, G. (1997). HF‐radar observations of the dayside magnetic merging rate: a geospace environment modeling boundary layer campaign study. Journal of Geophysical Research, 102, 9603–9617.
8 Baumjohann, W., Blanc, M., Fedorov, A., & Glassmeier, K.‐H. (2010). Current systems in planetary magnetospheres and ionospheres. Space Science Reviews. 152, 99–134. doi: 10.1007/s11214‐010‐9629‐z
9 Birkeland, K. (1908). The Norwegian Aurora Polaris Expedition 1902–1903, vol. 1. New York and Christiania: H. Aschehoug.
10 Borovsky, J. E., Lavraud, B., & Kuznetsova, M. M. (2009). Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere. Journal of Geophysical Research, 114, A03224. doi:10.1029/2009JA014058
11 Bristow, W. A., Otto, A., & Lummerzheim, D. (2001). Substorm convection patterns observed by the super dual auroral radar network. Journal of Geophysical Research, 106, 24,593–24,609.
12 Bristow, W. A., Sofko, G. J., Stenbaek‐Nielsen, H. C., Wei, S., Lummerzheim, D., & Otto, A. (2003). Detailed analysis of substorm observations using SuperDARN, UVI, ground‐based magnetometers, and all‐sky imagers. Journal of Geophysical Research, 108, 1124. doi:10.1029/2002JA009242
13 Browett, S. D., Fear, R. C., Grocott, A., & Milan, S. E. (2017). Timescales for the penetration of IMF By into the Earth's magnetotail. Journal of Geophysical Research Space Physics, 122, 579–593. doi: 10.1002/2016JA023198
14 Burch, J. L. (2000). Image Mission overview. In J. L. Burch (Ed.), The Image Mission. Dordrecht: Springer. doi:10.1007/978‐94‐011‐4233‐5_1
15 Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proceedings of the Physical Society, 43, 26.
16 Chapman, S., & Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36, 77–97. doi:10.1029/TE036i002p00077
17 Chisham, G., et al. (2007). A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophysics, 28, 33–109. doi:10.1007/s10712‐007‐9017‐8
18 Chisham, G., et al. (2008). Remote sensing of the spatial and temporal structure of magnetopause and magnetotail reconnection from the ionosphere. Reviews of Geophysics, 46, RG1004. doi:10.1029/2007RG000223
19 Chisham, G., Freeman, M. P., Abel, G. A., Bristow, W. A., Marchaudon, A., Ruohoniemi, J. M., & Sofko, G. J. (2009). Spatial distribution of average vorticity in the high‐latitude ionosphere and its variation with interplanetary magnetic field direction and season. Journal of Geophysical Research, 114, A09301. doi:10.1029/2009JA014263
20 Clausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., Milan, S. E., & Anderson, B. J. (2012). Dynamics of the region 1 Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Journal of Geophysical Research, 117, A06233. doi:10.1029/2012JA017666.
21 Cowley, S. W. H. (1981a). Magnetospheric and ionospheric flow and the interplanetary magnetic field. In The physical basis of the ionosphere in the solar‐terrestrial system (pp. 4‐1–4‐14). AGARD‐CP‐295.
22 Cowley, S. W. H. (1981b). Magnetospheric asymmetries associated with the Y‐component of the IMF. Planetary and Space Science, 29, 79–96.
23 Cowley, S. W. H. (2000). Magnetosphere‐ionosphere interactions: A tutorial review. In S. Ohtani et al. (Eds.), Magnetospheric current systems (pp. 91–106). Geophysical Monograph Series, vol. 118. Washington, DC: AGU. doi:10.1029/GM118p0091
24 Cowley, S. W. H. (2015). Dungey's Reconnection Model of the Earth's Magnetosphere: The first 40 years. In D. Southwood et al. (Eds.), Magnetospheric plasma physics: The impact of Jim Dungey's research. Astrophysics and Space Science Proceedings, 41, Springer. doi: 10.1007/978‐3‐319‐18359‐6_1
25 Cowley, S. W. H., & Lockwood, M. (1992). Excitation and decay of solar wind‐driven flows in the magnetosphere‐ionosphere system. Annals of Geophysics, 10, 103–115.
26 Cowley, S. W. H., Morelli, J. P., & Lockwood, M. (1991). Dependence of convective flows and particle precipitation in the high‐latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field. Journal of Geophysical Research, 96, 5557–5564.
27 Coxon, J. C., Milan, S. E., Korth, H., & Anderson, B. J. (2018). Ampère's Law: A review of Birkeland current research using the Iridium constellation. In A. Keiling et al. (Eds.), Electric currents in geospace and beyond. Geophysical Monograph Series, vol. 235. Washington, DC: AGU.
28 Cummings, W. D., & Dessler, A. J. (1967). Field‐aligned currents in the magnetosphere. Journal of Geophysical Research, 72, 1007–1013. doi: 10.1029/JZ072i003p01007
29 Davis, T. N., & Sugiura, M. (1966). Auroral electrojet activity index AE and its universal time variations. Journal of Geophysical Research, 71, 785–801.
30 DeJong, A.D., Ridley, A. J., & Clauer, C. R. (2008). Balanced reconnection intervals: Four case studies. Annals of Geophysics, 26, 3897–3912.
31 Dungey, J. W. (1961). Interplanetary magnetic fields and the auroral zones. Physical Review Letters, 6, 47–48.
32 Dungey, J. W. (1963). The structure of the exosphere or adventures in velocity space. In C. DeWitt, J. Hieblot, & L. Le Beau (Eds.), Geophysics, the Earth's environment (pp. 503–550). New York: Gordon and Breach.
33 Erickson, G. M., Spiro, R. W., & Wolf, R. A. (1991). The physics of Harang discontinuity. Journal of Geophysical Research, 96, 1633–1645.
34 Etemadi, A., Cowley, S. W. H., Lockwood, M., Bromage, B. J. I., Willis, D. M., & Luhr, H. (1988). The dependence of high‐latitude dayside ionospheric flows on the north‐south component of the IMF: A high time resolution correlation‐analysis using EISCAT POLAR and AMPTE UKS and IRM data. Planetary and Space Science, 36, 471–498.
35 Evans, J. V., Holt, J. M., Oliver, W. L., & Wand, R. H. (1980). Millstone Hill incoherent scatter observations of auroral convection over 60o < Λ < 75o; 2. Initial results. Journal of Geophysical Research, 85, 41.
36 Fear, R. C., & Milan, S. E. (2012a). The IMF dependence of the local time of transpolar arcs: Implications for formation mechanism. Journal of Geophysical Research, 117, A03213. doi: 10.1029/2011JA017209
37 Fear, R. C., & Milan, S. E. (2012b). Ionospheric flows relating to transpolar arc formation. Journal of Geophysical Research, 117, A09230. doi:10.1029/2012JA017830
38 Fear, R. C., Trenchi, L., Coxon, J. C., & Milan, S. E. (2017). How much flux does a flux transfer event transfer? Journal of Geophysical Research Space Physics, 122. doi:10.1002/2017JA024730
39 Freeman, M. P. (2003). A unified model of the response of ionospheric convection to changes in the interplanetary magnetic field. Journal of Geophysical Research, 108(A1), 1024. doi:10.1029/2002JA009385
40 Freeman, M. P., & Southwood, D. J. (1988). The effect of magnetospheric erosion on mid‐ and high‐latitude ionospheric flows. Planetary and Space Science, 36, 509–522.
41 Frey, H. U., Østgaard, N., Immel, T. J., Korth, H., & Mende, S. B. (2004). Seasonal dependence of localized, high‐latitude dayside aurora (HiLDA). Journal of Geophysical Research, 109, A04303. doi:10.1029/2003JA010293
42 Fukushima, N. (1976). Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform conducting ionosphere. Report of Ionosphere and Space Research in Japan, 30, 35–50.
43 Ganushkina, N. Y., Liemohn, M. W., Dubyagin, S., Daglis, I. A., Dandouras, I., De Zeeuw, D. L., Ebihara, Y, et al. (2015). Defining and resolving current systems in geospace. Annals of Geophysics, 33, 1369–1402. doi: 10.5194/angeo‐33‐1369‐2015
44 Goudarzi, A., Lester, M., Milan, S. E., & Frey, H. U. (2008). Multi‐instrument observations of a transpolar arc in the northern hemisphere. Annals of Geophysics, 26, 201–210.
45 Green, D. L., Waters, C. L., Anderson, B. J., Korth, H., & Barnes, R. J. (2006). Comparison of large‐scale Birkeland currents determined from Iridium and SuperDARN data. Annals of Geophysics, 24, 941–959. doi: 10.5194/angeo‐24‐941‐2006
46 Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., Villain, J.‐P., et al. (1995). DARN/SuperDARN: A global view of the dynamics of high‐latitude convection. Space Science Reviews, 71, 761–796.
47 Greenwald, R. A., Weiss, W., Nielsen, E., & Thomson, N. R. (1978). STARE: A new radar auroral backscatter experiment in northern Scandinavia. Radio Science, 13, 1021–1039. doi:10.1029/RS013i006p01021
48 Grocott, A. (2017). Time‐dependence of dawn‐dusk asymmetries in the terrestrial ionospheric convection pattern. In S. E. Haaland, A. Runov, & C. Forsyth (Eds.), Dawn‐dusk asymmetries in planetary plasma environments, vol. 228. Hoboken, NJ: American Geophysical Union Monograph. doi:10.1002/9781119216346.ch9
49 Grocott, A., & Milan, S. E. (2014). The influence of IMF clock angle timescales on the morphology of ionospheric convection. Journal of Geophysical Research Space Physics, 119. doi: 10.1002/2014JA020136
50 Grocott, A., Badman, S. V., Cowley, S. W. H., Yeoman, T. K., & Cripps, P. J. (2004). The influence of IMF By on the nature of the nightside high‐latitude ionospheric flow during intervals of positive IMF Bz. Annals of Geophysics, 22, 1755–1764. doi:10.5194/angeo‐ 22‐1755‐2004
51 Grocott, A., Cowley, S. W. H., & Sigwarth, J. B. (2003). Ionospheric flow during extended intervals of northward but By‐dominated IMF. Annals of Geophysics, 21, 509–538. doi:10.5194/angeo‐21‐509‐2003
52 Grocott, A., Cowley, S. W. H., Sigwarth, J. B., Watermann, J. F., & Yeoman, T. K. (2002). Excitation of twin‐vortex flow in the nightside high‐latitude ionosphere during an isolated substorm. Annals of Geophysics, 20, 1577–1601.
53 Grocott, A., Laurens, H. J., & Wild, J. A. (2017). Nightside ionospheric convection asymmetries during the early substorm expansion phase: Relationship to onset local time. Geophysical Research Letters, 44. doi:10.1002/2017GL075763
54 Grocott, A., Milan, S. E., & Yeoman, T. K. (2008). Interplanetary magnetic field control of fast azimuthal flows in the nightside high‐latitude ionosphere. Geophysical Research Letters, 35, L08102. doi:10.1029/2008GL033545.
55 Grocott, A., Milan, S. E., Yeoman, T. K., Sato, N., Yukimatu, A. S., & Wild, J. A. (2010). Superposed epoch analysis of the ionospheric convection evolution during substorms, IMF BY dependence. Journal of Geophysical Research, 115, A00I06. doi: 10.1029/2010JA015728
56 Grocott, A., Wild, J. A., Milan, S. E., & Yeoman, T. K. (2009). Superposed epoch analysis of the ionospheric convection evolution during substorms: onset latitude dependence. Annals of Geophysics, 27, 591–600.
57 Grocott, A., Yeoman, T. K., Milan, S. E., & Cowley, S. W. H. (2005). Interhemispheric observations of the ionospheric signature of tail reconnection during IMF‐northward non‐ substorm intervals. Annals of Geophysics, 23, 1763–1770. doi:10.5194/angeo‐23‐1763‐2005
58 Grocott, A., Yeoman, T. K., Milan, S. E., Amm, O., Frey, H. U., Juusola, L., Nakamura, R., et al. (2007). Multi‐scale observations of magnetotail flux transport during IMF‐northward nonsubstorm intervals. Annals of Geophysics, 25, 1709–1720.
59 Hairston, M. R., Drake, K. A., & Skoug, R. (2005). Saturation of the ionospheric polar cap potential during the October–November 2003 superstorms. Journal of Geophysical Research, 110, A09S26. doi:10.1029/2004JA010864
60 Hairston, M. R., Hill, T. W., & Heelis, R. A. (2003). Observed saturation of the ionospheric polar cap potential during the 31 March 2001 storm. Geophysical Research Letters, 30, 1325. doi:10.1029/2002GL015894
61 Heelis, R. A. (1984). The effects of interplanetary magnetic field orientation on dayside high‐latitude ionospheric cusp. Journal of Geophysical Research, 89, 2873–2880.
62 Heppner, J. P. (1977). Empirical models of high‐latitude electric fields. Journal of Geophysical Research, 82, 1115.
63 Heppner, J. P., & Maynard, N. C. (1987). Empirical high‐latitude electric‐field models. Journal of Geophysical Research, 92, 4467–4489.
64 Holzer, T. E., McPherron, R. L., & Hardy, D. A. (1986). A quantitative empirical model of the magnetospheric flux transfer process. Journal of Geophysical Research, 91, 3287.
65 Hones, E. W., Jr., (1979). Transient phenomena in the magnetotail and their relationship to substorms. Space Science Reviews, 23, 393.
66 Huang, C.‐S., DeJong, A. D., & Cai, X. (2009). Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events. Journal of Geophysical Research, 114, A07202. doi:10.1029/2009JA014232
67 Huang, C.‐S., Sofko, G. J., Koustov, A. V., Andre, D. A., Ruohoniemi, J. M., Greenwald, R. A., & Hairston, M. R. (2000). Evolution of ionospheric multicell convection during northward interplanetary magnetic field with |Bz/By| > 1. Journal of Geophysical Research, 105, 27095–27107.
68 Hubert, B., Gérard, J.‐C., Milan, S. E., & Cowley, S. W. H. (2017). Magnetic reconnection during steady magnetospheric convection and magnetospheric modes. Annals of Geophysics, 35, 505–524. doi:10.5194/angeo‐35‐505‐2017
69 Hubert, B., Milan, S. E., Grocott, A., Cowley, S. W. H., & Gérard, J.‐C. (2006). Dayside and nightside reconnection rates inferred from IMAGE‐FUV and SuperDARN data. Journal of Geophysical Research, 111, A03217. doi:10.1029/2005JA011140
70 Iijima, T., & Potemra, T. A. (1976a). Amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research, 81, 2165–2174. doi:10.1029/JA081i013p02165.
71 Iijima, T., & Potemra, T. A. (1976b). Field‐aligned currents in the dayside cusp observed by Triad. Journal of Geophysical Research, 81, 5971–5979. doi:10.1029/JA081i034p05971
72 Iijima, T., & Potemra, T. A. (1978). Large‐scale characteristics of field‐aligned currents associated with substorms. Journal of Geophysical Research, 83, 599–615.
73 Imber, S. M., Milan, S. E., & Hubert, B. (2006). Ionospheric flow and auroral signatures of dual lobe reconnection. Annals of Geophysics, 24, 3115–3129.
74 Kamide, Y., & Vickrey, J. F. (1983). Variability of the Harang discontinuity as observed by the Chatanika radar and the IMS Alaska magnetometer chain. Geophysical Research Letters, 10, 159.
75 Kamide, Y., Kokubun, S., Bargatze, L. F., & Frank, L. A. (1999). The size of the polar cap as an indicator of substorm energy. Physics and Chemistry of the Earth C, 24, 119.
76 Khan, H., & Cowley, S. W. H. (1999). Observations of the response time of high‐ latitude ionospheric convection to variations in the interplanetary magnetic field using EISCAT and IMP‐8 data. Annals of Geophysics, 17, 1306–1335.
77 Khurana, K. K., Walker, R. J., & Ogino, T. (1996). Magnetic convection in the presence of interplanetary magnetic field By: A conceptual model and simulations. Journal of Geophysical Research, 101, 4907–4916.
78 Kissinger, J., McPherron, R. L., Hsu, T.‐S., Angelopoulos, V., & Chu, X. (2012). Necessity of substorm expansions in the initiation of steady magnetospheric convection. Geophysical Research Letters, 39, L15105. doi:10.1029/2012GL052599
79 Koskinen, H. E. J., & Pulkkinen, T. (1995). Midnight velocity shear zone and the concept of Harang discontinuity. Journal of Geophysical Research, 100, 9539–9547.
80 Kunkel, T., Baumjohann, W., Untiedt, J., &. Greenwald, R. (1986). Electric fields and currents at the Harang discontinuity: A case study. Journal of Geophysical Research, 59, 73–86.
81 Laundal, K. M., Finlay, C. C., Olsen, N., & Reistad, J. P. (2018). Solar wind and seasonal influence on ionospheric currents from Swarm and CHAMP measurements. Journal of Geophysical Research Space: Physics, 123. doi:10.1029/2018JA025387
82 Laundal, K. M., Haaland, S. E., Lehtinen, N., Gjerloev, J. W., Østgaard, N., Tenfjord, P., Reistad, J. P., et al. (2015). Birkeland current effects on high‐latitude ground magnetic field perturbations. Geophysical Research Letters, 42, 7248–7254. doi: 10.1002/2015GL065776
83 Lockwood, M. (1991). On flow reversal boundaries and transpolar voltage in average models of high latitude convection. Planetary and Space Science, 3, 397–409.
84 Lockwood, M., & Cowley, S. W. H. (1992). Ionospheric convection and the substorm cycle. In Proceedings of the International Conference on Substorms (ICS‐1) (pp. 99–109). Noordwijk, The Netherlands: ESA.
85 Lockwood, M., & Cowley, S. W. H. (1999). Comment on “A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electro‐ dynamics technique” by Ridley et al. Journal of Geophysical Research, 104, 4387–4391.
86 Lockwood, M., & Morley, S. K. (2004). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: I. Ionospheric convection. Annals of Geophysics, 22, 73–91.
87 Lockwood, M., Cowley, S. W. H., & Freeman, M. P. (1990). The excitation of plasma convection in the high‐latitude ionosphere. Journal of Geophysical Research, 95, 7961–7972.
88 Lockwood, M., Moen, J., Cowley, S. W. H., Farmer, A. D., Lovhaug, U. P., Luhr, H. & Davda, V. N. (1993). Variability of dayside convection and motions of the cusp/cleft aurora. Geophysical Research Letters, 20, 1011–1014.
89 Lockwood, M., Sandholt, P. E., Cowley, S. W. H., & Oguti, T. (1989). Interplanetary magnetic field control of dayside auroral activity and the transfer of momentum across the dayside magnetopause. Planetary and Space Science, 37, 1347.
90 Lockwood, M., van Eyken, A. P., Bromage, B. J. I., Willis, D. M., & Cowley, S. W. H. (1986). Eastward propagation of a plasma convection enhancement following a southward turning of the interplanetary magnetic field. Geophysical Research Letters, 13, 72–76.
91 Lu, G., Holzer, T. E., Lummerzheim, D., Ruohoniemi, J. M., Stauning, P., Troshichev, O., Newell, P. T., et al. (2002). Ionospheric response to the interplanetary magnetic field southward turning: Fast onset and slow reconfiguration. Journal of Geophysical Research, 107, A81153. doi: 10.1029/2001JA000324
92 Lyons, L. R. (1985). A simple model for polar cap convection patterns and generation of auroras. Journal of Geophysical Research, 90, 1561.
93 McPherron, R. L. (1970). Growth phase of magnetospheric substorms. Journal of Geophysical Research, 75, 5592–5599. doi: 10.1029/JA075i028p05592
94 McPherron, R. L., Russell, C. T., & Aubry, M. (1973). Satellite studies of magnetospheric substorms on August 15, 1978: 9. Phenomenological model for substorms. Journal of Geophysical Research, 78, 3131–3149.
95 McWilliams, K. A. (1997). A SuperDARN study of dayside field‐aligned current regions. MSc thesis, University of Saskatchewan, Saskatoon, Sask., Canada.
96 McWilliams, K. A., Pfeifer, J. B., & McPherron, R. L. (2008). Steady magnetospheric convection selection criteria: implications of global SuperDARN convection measurements. Geophysical Research Letters, 35, L09102.
97 Milan, S. E. (2004). Dayside and nightside contributions to the cross polar cap potential: Placing an upper limit on a viscous‐like interaction. Annals of Geophysics, 22, 3771–3777.
98 Milan, S. E. (2013). Modeling Birkeland currents in the expanding/contracting polar cap paradigm. Journal of Geophysical Research Space Physics, 118. doi:10.1002/jgra.50393
99 Milan, S. E. (2015). Sun et Lumière: Solar wind‐magnetosphere coupling as deduced from ionospheric flows and polar auroras. In D. Southwood et al. (Eds.), Magnetospheric plasma physics: The impact of Jim Dungey's research. Astrophysics and Space Science Proceedings 41, Springer. doi: 10.1007/978‐3‐319‐18359‐6_2, 2015
100 Milan, S. E., Carter, J. A., Sangha, H., Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J., et al. (2018a). Timescales of dayside and nightside field‐aligned current response to changes in solar wind‐magnetosphere coupling. Journal of Geophysical Research Space Physics, 123, in press.
101 Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.‐T., Laundal, K., Østgaard, N., et al. (2017). Overview of solar wind‐magnetosphere‐ionosphere‐atmosphere coupling and the generation of magnetospheric currents. Space Science Reviews, 206. doi: 10.1007/s11214‐017‐0333‐0
102 Milan, S. E., Gosling, J. S., & Hubert, B. (2012). Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. Journal of Geophysical Research, 117, A03226. doi:10.1029/2011JA017082
103 Milan, S. E., Grocott, A., Forsyth, C., Imber, S. M., Boakes, P. D., & Hubert, B. (2009). A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: Open magnetic flux control of substorm intensity. Annals of Geophysics, 27, 659–668.
104 Milan, S. E., Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval, Geophys. Res. Lett., 36, L18101, doi: 10.1029/ 2009GL039997, 2009.
105 Milan, S. E., Hubert, B., & Grocott, A. (2005). Formation and motion of a transpolar arc in response to dayside and nightside reconnection. Journal of Geophysical Research, 110, A01212. doi:10.1029/2004JA010835
106 Milan, S. E., Imber, S. M., Carter, J. A., Walach, M.‐T., & Hubertv, B. (2016). What controls the local time extent of flux transfer events? Journal of Geophysical Research Space Physics, 121. doi: 10.1002/2015JA022012
107 Milan, S. E., Lester, M., Cowley, S. W. H., & Brittnacher, M. (2000a). Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause. Journal of Geophysical Research, 105, 15,741–15,755.
108 Milan, S. E., Lester, M., Cowley, S. W. H., & Brittnacher, M. (2000b). Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field. Annals of Geophysics, 18, 436–444.
109 Milan, S. E., Lester, M., Cowley, S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., Sofko, G. et al. (2003). Variations in polar cap area during two substorm cycles. Annals of Geophysics, 21, 1121–1140.
110 Milan, S. E., Provan, G., & Hubert, B. (2007). Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. Journal of Geophysical Research, 112, A01209. doi:10.1029/2006JA011642
111 Milan, S. E., Walach, M.‐T., Carter, J. A., Sangha, H., & Anderson, B. J. (2018b). Substorm onset latitude and the steadiness of magnetospheric convection. Journal of Geophysical Research Space Physics, submitted.
112 Morelli, J. P., et al. (1995). Radar observations of auroral zone flows during a multiple‐onset substorm. Annals of Geophysics, 13, 1144–1163. doi:10.1007/s00585‐995‐1144‐2
113 Morley, S. K., & Lockwood, M. (2005). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: II. Measuring expansions in the ionospheric flow response. Annals of Geophysics, 23, 2501–2510.
114 Morley, S. K., & Lockwood, M. (2006). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: III. Quasi‐instantaneous convection responses in the Cowley‐Lockwood paradigm. Annals of Geophysics, 24, 961–972. www.ann‐geophys.net/24/961/2006/
115 Moses, J. J., Siscoe, G. L., Heelis, R. A., & Winningham, J. D. (1989). Polar cap deflation during magnetospheric substorms. Journal of Geophysical Research, 94, 3785.
116 Nishida, A., Mukai, T., Yamamoto, T., Kokubun, S., & Maezawa, K. (1998). A unified model of the magnetotail convection in geomagnetically quiet and active times. Journal of Geophysical Research, 103(A3), 4409–4418.
117 Nishida, A., Mukai, T., Yamamoto, T., Saito, Y., Kokubun, S., & Maezawa, K. (1995). Geotail observation of magnetospheric convection in the distant tail at 200 Re in quiet times. Journal of Geophysical Research, 100(A12), 23,663–23,675.
118 Nishida, A., Yamamoto, T., Tsuruda, K., Hayakawa, H., Matsuoka, A., Kokubun, S., Nakamura, M., et al. (1994). Structure of the neutral sheet in the distant tail (X = 210 Re) in geomagnetically quiet times. Geophysical Research Letters, 21(25), 2951–2954.
119 Parker, E. N. (1996). The alternative paradigm for magnetospheric physics. Journal of Geophysical Research, 101, 10587–10625.
120 Pitkänen, T., Hamrin, M.,Kullen, A., Maggiolo, R., Karlsson, T., Nilsson, H., & Norqvist, P. (2016). Response of magnetotail twisting to variations in IMF By: A THEMIS case study 1–2 January 2009. Geophysical Research Letters, 43, 7822–7830. doi: 10.1002/2016GL070068
121 Pitkänen, T., Hamrin, M., Norqvist, P., Karlsson, T., Nilsson, H., Kullen, A., Imber, S. M., et al. (2015). Azimuthal velocity shear within an Earthward fast flow ‐ further evidence for magnetotail untwisting? Annals of Geophysics, 33, 245–255. doi: 10.5194/angeo‐ 33‐245‐2015
122 Reiff, P. H., & Burch, J. L. (1985). IMF By‐dependent plasma flow and Birkeland currents in the dayside magnetosphere; 2: A global model for northward and southward IMF. Journal of Geophysical Research, 90, 1595–1609.
123 Reiff, P. H., Spiro, R. W., & Hill, T. W. (1981). Dependence of polar cap potential drop on interplanetary parameters. Journal of Geophysical Research, 86, 7639–7648. doi:10.1029/JA086iA09p07639
124 Reistad, J. P., Østgaard, N., Laundal, K. M., Ohma, A., Snekvik, K., Tenfjord, P., et al. (2018). Observations of asymmetries in ionospheric return flow during different levels of geomagnetic activity. Journal of Geophysical Research Space Physics, 123. doi:10.1029/2017JA025051
125 Reistad, J. P., Østgaard, N., Tenfjord, P., Laundal, K. M., Snekvik, K., Haaland, S., Milan, S. E., et al. (2016). Dynamic effects of restoring footpoint symmetry on closed magnetic field lines. Journal of Geophysical Research Space Physics, 121, 3963–3977. doi:10.1002/2015JA022058.
126 Rich, F. J., & Hairston, M. (1994). Large‐scale convection patterns observed by DMSP. Journal of Geophysical Research, 99, 3827–3844.
127 Richmond, A. D., & Kamide, Y. (1988). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique. Journal of Geophysical Research, 93, 5741.
128 Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. (1997). Ionospheric convection during nonsteady interplanetary magnetic field conditions. Journal of Geophysical Research, 102, 14,563–14,579.
129 Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. (1998). A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. Journal of Geophysical Research, 103, 4023–4039.
130 Rostoker, G., Akasofu, S.‐I., Foster, J., Greenwald, R. A., Kamide, Y., Kawasaki, K., Lui, A. T. Y., et al. (1980). Magnetospheric substorms: Definition and signatures. Journal of Geophysical Research, 85, 1663–1668.
131 Ruohoniemi, J. M., & Greenwald, R. A. (1996). Statistical patterns of high‐latitude convection obtained from Goose Bay HF radar observations. Journal of Geophysical Research, 101, 21743–21763.
132 Ruohoniemi, J. M., & Greenwald, R. A. (1998). The response of high‐latitude convection to a sudden southward IMF turning. Geophysical Research Letters, 25, 2913–2916.
133 Ruohoniemi, J. M., Shepherd, S. G., & Greenwald, R. A. (2002). The response of the high‐latitude ionosphere to IMF variations. Journal of Atmospheric and Solar‐Terrestrial Physics, 64, 159–171.
134 Russell, C. T. (1972). The configuration of the magnetosphere. In E. R. Dyer (Ed.), Critical problems of magnetospheric physics (p. 1). Washington, DC: National Academy of Sciences.
135 Russell, C. T., & McPherron, R. L. (1973). The magnetotail and substorms. Space Science Reviews, 15, 205.
136 Senior, C., Cerisier, J.‐C., Rich, F., Lester, M., & Parks, G. K. (2002). Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions, SuperDARN and satellite observations. Annals of Geophysics, 20, 771–779.
137 Sergeev, V. A. (1977). On the state of the magnetosphere during prolonged periods of southward oriented IMF. Phys. Solariterr. Potsdam, 5, 39.
138 Sergeev, V. A., Pellinen, R. J., & Pulkkinen, T. I. (1996). Steady magnetospheric convection: A review of recent results. Space Science Reviews, 75, 551–604.
139 Shepherd, S. G. (2006). Polar cap potential saturation: Observations, theory, and modelling. Journal of Atmospheric and Solar‐Terrestrial Physics, 69, 234–248.
140 Siscoe, G., Raeder, J., & Ridley, A. J. (2004). Transpolar potential saturation models compared. Journal of Geophysical Research, 109, A09203. doi:10.1029/2003JA010318
141 Siscoe, G. L., & Huang, T. S. (1985). Polar cap inflation and deflation. Journal of Geophysical Research, 90, 543–547.
142 Siscoe, G. L., Crooker, N. U., & Siebert, K. D. (2002). Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure. Journal of Geophysical Research, 107(A10), 1321. doi:10.1029/2001JA009176
143 Sofko, G. J., Greenwald, R., & Bristow, W. (1995). Direct determination of large‐scale magnetospheric field‐aligned currents with SuperDARN. Geophysical Research Letters, 22, 2041–2044.
144 Stern, D. P. (1973). A study of the electric field in an open magnetospheric model. Journal of Geophysical Research, 78, 7292.
145 Taguchi, S., & Hoffman, R. A. (1996). Ionospheric plasma convection in the midnight sector for northward interplanetary magnetic field. Journal of Geomagnetism and Geoelectricity, 48(5–6), 925–933.
146 Taguchi, S., Sugiura, M., Winningham, I., & Slavin, J. A. (1994). By‐controlled convection and field‐aligned currents near midnight auroral oval for northward interplanetary magnetic‐field. Journal of Geophysical Research, 99(A4), 6027–6044.
147 Tanaka, T. (2001). Interplanetary magnetic field By and auroral conductance effects on high‐latitude ionospheric convection patterns. Journal of Geophysical Research, 106(A11), 24,505–24,516.
148 Taylor, J. R., Yeoman, T. K., Lester, M., Emery, B. A., & Knipp, D. J. (1996). Variations in the polar cap area during intervals of substorm activity on 20–21 March 1990 deduced from AMIE convection maps. Annals of Geophysics, 14, 879–887.
149 Tenfjord, P., Østgaard, N., Snekvik, K., Laundal, K. M., Reistad, J., Haaland, S., & Milan, S. E. (2015). How the IMF BY induces a BY component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. Journal of Geophysical Research Space Physics, 120. doi:10.1002/2015JA021579
150 Thomas, E. G., & Shepherd, S. G. (2018). Statistical patterns of ionospheric convection derived from mid‐latitude, high‐latitude, and polar SuperDARN HF radar observations. Journal of Geophysical Research Space Physics, 123, 3196–3216. doi:10.1002/2018JA025280
151 Todd, H., Cowley, S. W. H., Lockwood, M., Willis, D. M., & Luhr, H. (1988). Response time of the high latitude dayside ionosphere to sudden changes in the north‐south component of the IMF. Planetary and Space Science, 36, 1415–1428.
152 Toffoletto, F. R., & Hill, T. W. (1989). Mapping the solar wind electric field to the Earth's polar caps. Journal of Geophysical Research, 94, 329.
153 Vasyliunas, V. M. (2005). Relation between magnetic fields and electric currents in plasmas. Annals of Geophysics, 23, 2589–2597. doi: 10.5194/angeo‐23‐2589‐2005
154 Volland, H. (1973). A semiempirical model of large‐scale magnetospheric electric fields. Journal of Geophysical Research, 78, 171–180.
155 Walach, M.‐T., & Milan, S. E. (2015). Are steady magnetospheric convection events prolonged substorms? Journal of Geophysical Research Space Physics, 120. doi: 10.1002/2014JA020631
156 Walach, M.‐T., Milan, S. E., Yeoman, T. K., Hubert, B. A., & Hairston, M. R. (2017). Testing nowcasts of the ionospheric convection from the expanding and contracting polar cap model. Space Weather, 15. doi:10.1002/2017SW001615
157 Watanabe, M., Sato, N., Greenwald, R. A., Pinnock, M., Hairston, M. R., Rairden, R. L., & McEwen, D. J. (2000). The ionospheric response to interplanetary magnetic field variations: Evidence for rapid global change and the role of preconditioning in the magnetosphere. Journal of Geophysical Research, 105, 22,995–22,977.
158 Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110, A05306. doi:10.1029/2004JA010884
159 Wild, J. A., Cowley, S. W. H., Davies, J. A., Khan, H., Lester, M., Milan, S. E., Provan, G., et al. (2001). First simultaneous observations of flux transfer events at the high‐latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars. Annals of Geophysics, 19, 1491–1508.
160 Williams, P. J. S., Virdi, T. S., & Cowley, S. W. H. (1989). Substorm processes in the geomagnetic tail and their effect in the nightside auroral zone ionosphere, as observed by EISCAT. Philosophical Transactions of the Royal Society of London, Ser. A., 328, 137.
161 Willis, D., Lockwood, M., Cowley, S. W. H., van Eyken, A. P., Bromage, B. J. I., Rishbeth, H., Smith, P. R., et al. (1986). A survey of simultaneous observations of the high‐latitude ionosphere and interplanetary magnetic field with EISCAT and AMPTE‐UKS. Journal of Atmospheric and Terrestrial Physics, 48, 987.
162 Wolf, R. A. (1970). Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. Journal of Geophysical Research, 75, 4677–4698.
163 Wygant, J. R., Torbert, R. B., & Mozer, F. S. (1983). Comparison of S3‐2 polar cap potential drops with interplanetary magnetic field and models of magnetopause reconnection. Journal of Geophysical Research, 88, 5727.
164 Zmuda, A. J., Heuring, F. T., & Martin, J. H. (1967). Dayside magnetic disturbances at 1,100 km in the auroral oval. Journal of Geophysical Research, 72, 1115–1117. doi: 10.1029/JZ072i003p01115
165 Zmuda, A. J., Martin, J. H., & Heuring, F. T. (1966). Transverse magnetic disturbances at 1100 kilometres in the auroral region. Journal of Geophysical Research, 71, 5033–5045.