Читать книгу Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов - Страница 65
REFERENCES
Оглавление1 Aa, E., Liu, S., Huang, W., Shi, L., Gong, J., Chen, Y., et al. (2016). Regional 3‐D ionospheric electron density specification on the basis of data assimilation of ground‐based GNSS and radio occultation data: Regional 3‐D ionosphere specification. Space Weather, 14(6), 433–448. doi:10.1002/2016SW001363
2 Aa, E., Ridley, A., Huang, W., Zou, S., Liu, S., Coster, A. J., & Zhang, S. (2018). An ionosphere specification technique based on data ingestion algorithm and empirical orthogonal function analysis method: Madrigal TEC ingestion into NeQuick and EOF analysis. Space Weather. doi:10.1029/2018SW001987
3 Anderson, D. N., Buchau, J., & Heelis, R. A. (1988). Origin of density enhancements in the winter polar cap ionosphere. Radio Science, 23(4), 513–519. doi:10.1029/RS023i004p00513
4 Bust, G. S., & Datta‐Barua, S. (2014). Scientific investigations using IDA4D and EMPIRE. In J. Huba, R. Schunk, & G. Khazanov (Eds.), Modeling the ionosphere‐thermosphere system (pp. 283–297). Geophysical Monograph Series. Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781118704417.ch23
5 Bust, G. S., & Mitchell, C. N. (2008). History, current state, and future directions of ionospheric imaging. Reviews of Geophysics, 46(1). doi:10.1029/2006RG000212
6 Carlson, H. C. (1994). The dark polar ionosphere: Progress and future challenges. Radio Science, 29(1), 157–165. doi:10.1029/93RS02125
7 Carlson, H. C. (2004). Ionospheric patch formation: Direct measurements of the origin of a polar cap patch. Geophysical Research Letters, 31(8). doi:10.1029/2003GL018166
8 Carlson, H. C. (2012). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques: Patch research and mitigation techniques. Radio Science, 47(4). doi:10.1029/2011RS004946
9 Carlson, H. C., Moen, J., Oksavik, K., Nielsen, C. P., McCrea, I. W., Pedersen, T. R., & Gallop, P. (2006). Direct observations of injection events of subauroral plasma into the polar cap. Geophysical Research Letters, 33(5). doi:10.1029/2005GL025230
10 Chartier, A. T., Mitchell, C. N., & Miller, E. S. (2018). Annual occurrence rates of ionospheric polar cap patches observed using swarm: Annual occurrence rates of ionospheric polar cap patches observed using Swarm. Journal of Geophysical Research: Space Physics. doi:10.1002/2017JA024811
11 Coley, W. R., & Heelis, R. A. (1998). Structure and occurrence of polar ionization patches. Journal of Geophysical Research: Space Physics, 103(A2), 2201–2208. doi:10.1029/97JA03345
12 Coster, A. J., Gaposchkin, E. M., & Thornton, L. E. (1992). Real‐Time Ionospheric Monitoring System Using GPS. Navigation, 39(2), 191–204. doi:10.1002/j.2161‐4296.1992.tb01874.x
13 Crowley, G. (1996). A critical review of ionospheric patches and blobs. In Review of radio science 1993–1999 (pp. 619–648). New York: Oxford University Press.
14 Dahlgren, H., Perry, G. W., Semeter, J. L., St. Maurice, J. P., Hosokawa, K., Nicolls, M. J., et al. (2012a). Space‐time variability of polar cap patches: Direct evidence for internal plasma structuring: Variability of polar cap patches. Journal of Geophysical Research: Space Physics, 117(A9). doi:10.1029/2012JA017961
15 Dahlgren, H., Semeter, J. L., Hosokawa, K., Nicolls, M. J., Butler, T. W., Johnsen, M. G., et al. (2012b). Direct three‐dimensional imaging of polar ionospheric structures with the Resolute Bay Incoherent Scatter Radar: The 3D imaging of polar ionospheric structures. Geophysical Research Letters, 39(5). doi:10.1029/2012GL050895
16 David, M., Sojka, J. J., Schunk, R. W., & Coster, A. J. (2016). Polar cap patches and the tongue of ionization: A survey of GPS TEC maps from 2009 to 2015: Patches and the TOI: GPS TEC maps. Geophysical Research Letters, 43(6), 2422–2428. doi:10.1002/2016GL068136
17 Fairfield, D. H., & Scudder, J. D. (1985). Polar rain: Solar coronal electrons in the Earth's magnetosphere. Journal of Geophysical Research, 90(A5), 4055. doi:10.1029/JA090iA05p04055
18 Foster, J. C. (1984). Ionospheric signatures of magnetospheric convection. Journal of Geophysical Research, 89(A2), 855. doi:10.1029/JA089iA02p00855
19 Foster, J. C. (1993). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research: Space Physics, 98(A2), 1675–1689. doi:10.1029/92JA02032
20 Foster, J. C., & Doupnik, J. R. (1984). Plasma convection in the vicinity of the dayside cleft. Journal of Geophysical Research, 89(A10), 9107. doi:10.1029/JA089iA10p09107
21 Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., et al. (2005). Multiradar observations of the polar tongue of ionization: Multiradar observations. Journal of Geophysical Research: Space Physics, 110(A9). doi:10.1029/2004JA010928
22 Foster, J. C., Erickson, P. J., Baker, D. N., Claudepierre, S. G., Kletzing, C. A., Kurth, W., et al. (2014). Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations: Rapid relativistic electron energization. Geophysical Research Letters, 41(1), 20–25. doi:10.1002/2013GL058438
23 Foster, J. C., Holt, J. M., Kelly, J. D., & Wickwar, V. B. (1985). High‐Resolution observations of electric fields and F‐region plasma parameters in the cleft ionosphere. In J. Holtet and A. Egeland (Eds.), The polar cusp (pp. 349–364). Springer. doi: 10.1007/978‐94‐009‐5295‐9
24 Gardner, L. C., Schunk, R. W., Scherliess, L., Eccles, V., Basu, S., & Valladeres, C. (2018). Modeling the mid‐latitude ionosphere storm enhanced density distribution with a data assimilation model. Space Weather. doi:10.1029/2018SW001882
25 Gardner, L. C., Schunk, R. W., Scherliess, L., Sojka, J. J., & Zhu, L. (2014). Global assimilation of ionospheric measurements, Gauss Markov model: Improved specifications with multiple data types: Data assimilation improved specification. Space Weather, 12(12), 675–688. doi:10.1002/2014SW001104
26 Gillies, R. G., van Eyken, A., Spanswick, E., Nicolls, M., Kelly, J., Greffen, M., et al. (2016). First observations from the RISR‐C incoherent scatter radar: First observations from RISR‐C. Radio Science, 51(10), 1645–1659. doi:10.1002/2016RS006062
27 Hays, P. B., Rusch, D. W., Roble, R. G., & Walker, J. C. G. (1978). The O I (6300 Å) airglow. Reviews of Geophysics, 16(2), 225. doi:10.1029/RG016i002p00225
28 Hosokawa, K., Moen, J. I., Shiokawa, K., & Otsuka, Y. (2011). Decay of polar cap patch: Decay of polar cap patch. Journal of Geophysical Research: Space Physics, 116(A5). doi:10.1029/2010JA016297
29 Hosokawa, K., Shiokawa, K., Otsuka, Y., Nakajima, A., Ogawa, T., & Kelly, J. D. (2006). Estimating drift velocity of polar cap patches with all‐sky airglow imager at Resolute Bay, Canada. Geophysical Research Letters, 33(15). doi:10.1029/2006GL026916
30 Hosokawa, K., St. Maurice, J. P., Sofko, G. J., Shiokawa, K., Otsuka, Y., & Ogawa, T. (2010). Reorganization of polar cap patches through shears in the background plasma convection: Reorganization of polar patch. Journal of Geophysical Research: Space Physics, 115(A1). doi:10.1029/2009JA014599
31 Hosokawa, K., Taguchi, S., & Ogawa, Y. (2016). Periodic creation of polar cap patches from auroral transients in the cusp: Polar patches and transient aurora in the cusp. Journal of Geophysical Research: Space Physics, 121(6), 5639–5652. doi:10.1002/2015JA022221
32 Jin, Y., Moen, J. I., & Miloch, W. J. (2014). GPS scintillation effects associated with polar cap patches and substorm auroral activity: Direct comparison. Journal of Space Weather and Space Climate, 4, A23. doi:10.1051/swsc/2014019
33 Jin, Y., Moen, J. I., Oksavik, K., Spicher, A., Clausen, L. B. N., & Miloch, W. J. (2017). GPS scintillations associated with cusp dynamics and polar cap patches. Journal of Space Weather and Space Climate, 7(A23). doi:10.1051/swsc/2017022
34 Jin, Y., Xing, Z., Zhang, Q., Wang, Y., & Ma, Y. (2018). Polar cap patches observed by the EISCAT Svalbard Radar: A statistical study of its dependence on the solar wind and IMF conditions. Journal of Atmospheric and Solar‐Terrestrial Physics. doi:10.1016/j.jastp.2018.01.011
35 Kozyra, J. U., Valladares, C. E., Carlson, H. C., Buonsanto, M. J., & Slater, D. W. (1990). A theoretical study of the seasonal and solar cycle variations of stable aurora red arcs. Journal of Geophysical Research, 95(A8), 12219. doi:10.1029/JA095iA08p12219
36 Kwagala, N. K., Oksavik, K., Lorentzen, D. A., & Johnsen, M. G. (2018). How often do thermally excited 630.0 nm emissions occur in the polar ionosphere? Journal of Geophysical Research: Space Physics, 123(1), 698–710. doi:10.1002/2017JA024744
37 Lamarche, L. J., & Makarevich, R. A. (2017). Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient‐drift instability: Density gradients and irregularities. Journal of Geophysical Research: Space Physics. doi:10.1002/2016JA023702
38 Lee, S. H., Zhang, H., Zong, Q.‐G., Otto, A., Rème, H., & Liebert, E. (2016). A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause: Statistical study of plumes and outflows. Journal of Geophysical Research: Space Physics, 121(1), 492–506. doi:10.1002/2015JA021540
39 Link, R., & Cogger, L. L. (1988). A reexamination of the O I 6300: Å nightglow. Journal of Geophysical Research, 93(A9), 9883. doi:10.1029/JA093iA09p09883
40 Link, R., McConnell, J. C., & Shepherd, G. G. (1981). A self‐consistent evaluation of the rate constants for the production of the OI 6300 Å airglow. Planetary and Space Science, 29(6), 589–594. doi:10.1016/0032‐0633(81)90106‐9
41 Liu, J., Wang, W., Burns, A., Solomon, S. C., Zhang, S., Zhang, Y., & Huang, C. (2016). Relative importance of horizontal and vertical transports to the formation of ionospheric storm‐enhanced density and polar tongue of ionization: Formation mechanisms for SED/TOI. Journal of Geophysical Research: Space Physics, 121(8), 8121–8133. doi:10.1002/2016JA022882
42 Lockwood, M., & Carlson, H. C. (1992). Production of polar cap electron density patches by transient magnetopause reconnection. Geophysical Research Letters, 19(17), 1731–1734. doi:10.1029/92GL01993
43 Lotko, W. (2007). The magnetosphere‐ionosphere system from the perspective of plasma circulation: A tutorial. Journal of Atmospheric and Solar‐Terrestrial Physics, 69(3), 191–211. doi:10.1016/j.jastp.2006.08.011
44 Lyons, L. R., & Williams, D. J. (1984). Quantitative aspects of magnetospheric physics. Dordrecht: Springer Netherlands. doi:10.1007/978‐94‐017‐2819‐5
45 Ma, Y. Z., Zhang, Q. H., Xing, Z. Y., Heelis, R. A., Oksavik, K., & Wang, Y. (2018). The ion/electron temperature characteristics of polar cap classical and hot patches and their influence on ion upflow. Geophysical Research Letters. doi:10.1029/2018GL079099
46 Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., & Runge, T. F. (1998). A global mapping technique for GPS‐derived ionospheric total electron content measurements. Radio Science, 33(3), 565–582. doi:10.1029/97RS02707
47 Moen, J., Gulbrandsen, N., Lorentzen, D. A., & Carlson, H. C. (2007). On the MLT distribution of F region polar cap patches at night. Geophysical Research Letters, 34(14). doi:10.1029/2007GL029632
48 Moen, J., Hosokawa, K., Gulbrandsen, N., & Clausen, L. B. N. (2015). On the symmetry of ionospheric polar cap patch exits around magnetic midnight: Polar cap patch exits around midnight. Journal of Geophysical Research: Space Physics, 120(9), 7785–7797. doi:10.1002/2014JA020914
49 Moen, J., Oksavik, K., Alfonsi, L., Daabakk, Y., Romano, V., & Spogli, L. (2013). Space weather challenges of the polar cap ionosphere. Journal of Space Weather and Space Climate, 3, A02. doi:10.1051/swsc/2013025
50 Nishimura, Y., Lyons, L. R., Zou, Y., Oksavik, K., Moen, J. I., Clausen, L. B., et al. (2014). Day‐night coupling by a localized flow channel visualized by polar cap patch propagation: Nishimura et al.: Day‐night coupling by flow channel. Geophysical Research Letters, 41(11), 3701–3709. doi:10.1002/2014GL060301
51 Noja, M., Stolle, C., Park, J., & Lühr, H. (2013). Long‐term analysis of ionospheric polar patches based on CHAMP TEC data: Polar patches based on CHAMP TEC data. Radio Science, 48(3), 289–301. doi:10.1002/rds.20033
52 Oksavik, K., Barth, V. L., Moen, J., & Lester, M. (2010). On the entry and transit of high‐density plasma across the polar cap: Plasma transport across the polar cap. Journal of Geophysical Research: Space Physics, 115(A12). doi:10.1029/2010JA015817
53 Oksavik, K., Ruohoniemi, J. M., Greenwald, R. A., Baker, J. B. H., Moen, J., Carlson, H. C., et al. (2006). Observations of isolated polar cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super Dual Auroral Radar Network (SuperDARN) Finland radars. Journal of Geophysical Research, 111(A5). doi:10.1029/2005JA011400
54 Perry, G. W., & St. Maurice, J. P. (2018). A polar‐cap patch detection algorithm for the Advanced Modular Incoherent Scatter Radar System. Radio Science. doi:10.1029/2018RS006600
55 Perry, G. W., Dahlgren, H., Nicolls, M. J., Zettergren, M., St. Maurice, J.‐P., Semeter, J. L., Sundberg, T., et al. (2015). Spatiotemporally resolved electrodynamic properties of a Sun‐aligned arc over Resolute Bay. Journal of Geophysical Research: Space Physics, 120, 9977–9987. doi:10.1002/2015JA021790
56 Perry, G. W., St. Maurice, J. P., & Hosokawa, K. (2013). The interconnection between cross‐polar cap convection and the luminosity of polar cap patches: Intensity of polar patches. Journal of Geophysical Research: Space Physics, 118(11), 7306–7315. doi:10.1002/2013JA019196
57 Ren, J., Zou, S., Gillies, R. G., Donovan, E., & Varney, R. H. (2018). Statistical characteristics of polar cap patches observed by RISR‐C. Journal of Geophysical Research: Space Physics. doi:10.1029/2018JA025621
58 Rideout, W., & Coster, A. (2006). Automated GPS processing for global total electron content data. GPS Solutions, 10(3), 219–228. doi:10.1007/s10291‐006‐0029‐5
59 Rodger, A. S., Pinnock, M., Dudeney, J. R., Baker, K. B., & Greenwald, R. A. (1994). A new mechanism for polar patch formation. Journal of Geophysical Research, 99(A4), 6425. doi:10.1029/93JA01501
60 Sakai, J., Hosokawa, K., Taguchi, S., & Ogawa, Y. (2014). Storm time enhancements of 630.0 nm airglow associated with polar cap patches. Journal of Geophysical Research: Space Physics, 119(3), 2214–2228. doi:10.1002/2013JA019197
61 Schunk, R. W., & Nagy, A. F. (2018). Ionospheres: Physics, plasma physics, and chemistry, 2nd ed. Cambridge: Cambridge University Press.
62 Semeter, J., Heinselman, C. J., Thayer, J. P., Doe, R. A., & Frey, H. U. (2003). Ion upflow enhanced by drifting F ‐region plasma structure along the nightside polar cap boundary: Ion upflow at the polar cap boundary. Geophysical Research Letters, 30(22). doi:10.1029/2003GL017747
63 Sobral, J. H. A., Takahashi, H., Abdu, M. A., Muralikrishna, P., Sahai, Y., Zamlutti, C. J., et al. (1993). Determination of the quenching rate of the O(1D) by O(3P) from rocket‐borne optical (630 nm) and electron density data. Journal of Geophysical Research: Space Physics, 98(A5), 7791–7798. doi:10.1029/92JA01839
64 Sojka, J. J., Bowline, M. D., & Schunk, R. W. (1994). Patches in the polar ionosphere: UT and seasonal dependence. Journal of Geophysical Research, 99(A8), 14959. doi:10.1029/93JA03327
65 Sojka, J. J., Schunk, R. W., Bowline, M. D., & Crain, D. J. (1997). Ambiguity in identification of polar cap F‐region patches: Contrasting radio and optical observation techniques. Journal of Atmospheric and Solar‐Terrestrial Physics, 59(2), 249–258. doi:10.1016/S1364‐6826(96)00077‐6
66 Spicher, A., Clausen, L. B. N., Miloch, W. J., Lofstad, V., Jin, Y., & Moen, J. I. (2017). Interhemispheric study of polar cap patch occurrence based on Swarm in situ data: Polar cap patches climatology. Journal of Geophysical Research: Space Physics. doi:10.1002/2016JA023750
67 Thomas, E. G., Hosokawa, K., Sakai, J., Baker, J. B. H., Ruohoniemi, J. M., Taguchi, S., et al. (2015). Multi‐instrument, high‐resolution imaging of polar cap patch transportation: Imaging polar cap patches. Radio Science, 50(9), 904–915. doi:10.1002/2015RS005672
68 Tu, J.‐N., Dhar, M., Song, P., Reinisch, B. W., Green, J. L., Benson, R. F., & Coster, A. J. (2007). Extreme polar cap density enhancements along magnetic field lines during an intense geomagnetic storm: Extreme polar cap density enhancements. Journal of Geophysical Research: Space Physics, 112(A5). doi:10.1029/2006JA012034
69 Valladares, C. E., Decker, D. T., Sheehan, R., & Anderson, D. N. (1996). Modeling the formation of polar cap patches using large plasma flows. Radio Science, 31(3), 573–593. doi:10.1029/96RS00481
70 Valladares, C. E., Decker, D. T., Sheehan, R., Anderson, D. N., Bullett, T., & Reinisch, B. W. (1998). Formation of polar cap patches associated with north‐to‐south transitions of the interplanetary magnetic field. Journal of Geophysical Research: Space Physics, 103(A7), 14657–14670. doi:10.1029/97JA03682
71 Wahlund, J. E., Opgenoorth, H. J., Häggström, I., Winser, K. J., & Jones, G. O. L. 1992). EISCAT observations of topside ionospheric ion outflows during auroral activity: Revisited. Journal of Geophysical Research: Space Physics, 97(A3), 3019–3037. doi:10.1029/91JA02438
72 Walsh, B. M., Foster, J. C., Erickson, P. J., & Sibeck, D. G. (2014). Simultaneous ground‐ and space‐based observations of the plasmaspheric plume and reconnection. Science, 343(6175), 1122–1125. doi:10.1126/science.1247212
73 Weber, E. J., Buchau, J., Moore, J. G., Sharber, J. R., Livingston, R. C., Winningham, J. D., & Reinisch, B. W. (1984). Flayer ionization patches in the polar cap. Journal of Geophysical Research, 89(A3), 1683. doi:10.1029/JA089iA03p01683
74 Whitteker, J. H., Shepherd, G. G., Anger, C. D., Burrows, J. R., Wallis, D. D., Klumpar, D. M., & Walker, J. K. (1978). The winter polar ionosphere. Journal of Geophysical Research, 83(A4), 1503. doi:10.1029/JA083iA04p01503
75 Yang, S. G., Zhang, B. C., Fang, H.‐X., Kamide, Y., Li, C.‐Y., Liu, J.‐M., et al. (2016). New evidence of dayside plasma transportation over the polar cap to the prevailing dawn sector in the polar upper atmosphere for solar‐maximum winter: Evidence for sunlit plasma to dawnside. Journal of Geophysical Research: Space Physics, 121(6), 5626–5638. doi:10.1002/2015JA022171
76 Yau, A. W., Peterson, W. K., & Abe, T. (2011). Influences of the ionosphere, thermosphere and magnetosphere on ion outflows. In W. Liu & M. Fujimoto (Eds.), The dynamic magnetosphere (pp. 283–314). Dordrecht, Netherlands: Springer. doi:10.1007/978‐94‐007‐0501‐2_16
77 Yin, P., Mitchell, C. N., Spencer, P., McCrea, I., & Pedersen, T. (2008). A multi‐diagnostic approach to understanding high‐latitude plasma transport during the Halloween 2003 storm. Annales Geophysicae, 26(9), 2739–2747. doi:10.5194/angeo‐26‐2739‐2008
78 Yin, P., Zheng, Y.‐N., Mitchell, C. N., & Li, B. (2017). A multiresolution inversion for imaging the ionosphere: A multiresolution ionospheric inversion. Journal of Geophysical Research: Space Physics, 122(6), 6799–6811. doi:10.1002/2016JA023728
79 Yuan, Z. G., Deng, X. H., & Wang, J. F. (2008). DMSP/GPS observations of intense ion upflow in the midnight polar ionosphere associated with the SED plume during a super geomagnetic storm. Geophysical Research Letters, 35(19). doi:10.1029/2008GL035462
80 Yue, X., Wan, W., Liu, L., Liu, J., Zhang, S., Schreiner, W. S., et al. (2016). Mapping the conjugate and corotating storm‐enhanced density during 17 March 2013 storm through data assimilation: Mapping the conjugate and corotating SED. Journal of Geophysical Research: Space Physics, 121(12), 12,202–12,210. doi:10.1002/2016JA023038
81 Zhang, Q.‐H., Lockwood, M., Foster, J. C., Zhang, S.‐R., Zhang, B.‐C., McCrea, I. W., et al. (2015). Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions: The full Dungey convection cycle. Journal of Geophysical Research: Space Physics, 120(6), 4519–4530. doi:10.1002/2015JA021172
82 Zhang, Q.‐H., Ma, Y.‐Z., Jayachandran, P. T., Moen, J., Lockwood, M., Zhang, Y.‐L., et al. (2017). Polar cap hot patches: Enhanced density structures different from the classical patches in the ionosphere: Hot patch different from classical patch. Geophysical Research Letters, 44(16), 8159–8167. doi:10.1002/2017GL073439
83 Zhang, Q. H., Moen, J., Lockwood, M., McCrea, I., Zhang, B.‐C., McWilliams, K. A., et al. (2016a). Polar cap patch transportation beyond the classic scenario: Patch evolution during northward IMF. Journal of Geophysical Research: Space Physics, 121(9), 9063–9074. doi:10.1002/2016JA022443
84 Zhang Q. H., Xing, Z. Y., Wang, Y., & Ma, Y. Z. (2018), Formation and evolution of polar cap ionospheric patches and their associated upflows and scintillations: A review, dayside magnetospheric interactions. In Q. G. Zong (Ed.), Geophysical Monograph 235, in press.
85 Zhang, Q. H., Zhang, B. C., Lockwood, M., Hu, H. Q., Moen, J., Ruohoniemi, J. M., et al. (2013a). Direct observations of the evolution of polar cap ionization patches. Science, 339(6127), 1597–1600. doi:10.1126/science.1231487
86 Zhang, Q. H., Zhang, B. C., Moen, J., Lockwood, M., McCrea, I. W., Yang, H. G., et al. (2013b). Polar cap patch segmentation of the tongue of ionization in the morning convection cell: Patch segmentation of TOI. Geophysical Research Letters, 40(12), 2918–2922. doi:10.1002/grl.50616
87 Zhang, Q. H., Zong, Q.‐G., Lockwood, M., Heelis, R. A., Hairston, M., Liang, J., et al. (2016b). Earth's ion upflow associated with polar cap patches: Global and in situ observations: Ion upflow associated with polar patch. Geophysical Research Letters, 43(5), 1845–1853. doi:10.1002/2016GL067897
88 Zou, S., & Ridley, A. J. (2016). Modeling of the evolution of storm‐enhanced density plume during the 24 to 25 October 2011 geomagnetic storm. In C. R. Chappell, R. W. Schunk, P. M. Banks, J. L. Burch, & R. M. Thorne (Eds.), Magnetosphere‐ionosphere coupling in the solar system (pp. 205–213). Geophysical Monograph Series. Hoboken, NJ: John Wiley & Sons, Inc. doi:10.1002/9781119066880.ch16
89 Zou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. (2014). On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow: Generation and decay of SED plumes. Journal of Geophysical Research: Space Physics, 119(10), 8543–8559. doi:10.1002/2014JA020408
90 Zou, S., Ozturk, D., Varney, R., & Reimer, A. (2017a). Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation: Effects of SC on the ionosphere. Geophysical Research Letters, 44(7), 3047–3058. doi:10.1002/2017GL072678
91 Zou, S., Ridley, A., Jia, X., Boyd, E., Nicolls, M., Coster, A., et al. (2017b). PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm: Ion upflow fluxes observed by PFISR. Journal of Geophysical Research: Space Physics. doi:10.1002/2016JA023697
92 Zou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. (2013). Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes: SED formation processes. Journal of Geophysical Research: Space Physics, 118(12), 7798–7809. doi:10.1002/2013JA018860
93 Zou, Y., Nishimura, Y., Lyons, L. R., & Shiokawa, K. (2017). Localized polar cap precipitation in association with nonstorm time airglow patches: Local precipitation at airglow patches. Geophysical Research Letters, 44(2), 609–617. doi:10.1002/2016GL071168
94 Zou, Y., Nishimura, Y., Lyons, L. R., Shiokawa, K., Donovan, E. F., Ruohoniemi, J. M., et al. (2015). Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection: Localized polar cap flow and airglow. Journal of Geophysical Research: Space Physics, 120(5), 4064–4078. doi:10.1002/2014JA020946