Читать книгу Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов - Страница 54

REFERENCES

Оглавление

1 Akasofu, S.‐I. (1964). The development of the auroral substorm. Planetary and Space Science, 12, 273–282.

2 Amm, O., Grocott, A., Lester, M., & Yeoman, T. K. (2010). Local determination of ionospheric plasma convection from coherent scatter radar data using the SECS technique. Journal of Geophysical Research, 115, A03304. doi: 10.1029/2009JA014832

3 Archer, W. E., Knudsen, D. J., Burchill, J. K., Jackel, B., Donovan, E., Connors, M., & Juusola, L. (2017). Birkeland current boundary flows. Journal of Geophysical Research: Space Physics, 122, 4617–4627. doi: 10.1002/2016JA023789

4 Balmforth, H. F., Moffett, R. J., & Rodger, A. S. (1999). Localised structure in the cusp and high latitude ionosphere: A modelling study. Annales Geophysicae, 17(4), 455–462. doi:10.1007/s00585‐999‐0455‐0

5 Bristow, W. A., Hampton, D. L., & Otto, A. (2016). High‐spatial‐resolution velocity measurements derived using Local Divergence‐Free Fitting of SuperDARN observations. Journal of Geophysical Research: Space Physics, 121, 1349–1361. doi: 10.1002/2015JA021862

6 Carlson, H. C. (2012). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Science, 47, RS0L21. doi:10.1029/2011RS004946

7 Carlson, H. C., Heelis, R. A., Weber, E. J., & Sharber, J. R. (1988). Coherent mesoscale convection patterns during northward interplanetary magnetic field. Journal of Geophysical Research, 93(A12), 14501–14514. doi: 10.1029/JA093iA12p14501

8 Carlson, H. C., Moen, J., Oksavik, K., Nielsen, C. P., McCreaI. W., Pedersen, T. R. & Gallop, P. (2006). Direct observations of injection events of subauroral plasma into the polar cap. Geophysical Research Letters, 33, L05103. doi: 10.1029/2005GL025230

9 Chaston, C. C., Seki, K., Sakanoi, T., Asamura, K., & Hirahara, M. (2010). Motion of aurorae. Geophysical Research Letters, 37, L08104. doi: 10.1029/2009GL042117

10 Codrescu, M., Fuller‐Rowell, T., & Foster, J. (1995). On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere. Geophysical Research Letters, 22(17), 2393–2396.

11 Cohen, I. J., et al. (2013). Auroral Current and Electrodynamics Structure (ACES) observations of ionospheric feedback in the Alfvén resonator and model responses. Journal of Geophysical Research: Space Physics, 118, 3288–3296. doi: 10.1002/jgra.50348

12 Coroniti, F. V., & Pritchett, P. L. (2014). The quiet evening auroral arc and the structure of the growth phase near‐Earth plasma sheet. Journal of Geophysical Research: Space Physics, 119, 1827–1836. doi: 10.1002/2013JA019435

13 Cousins, E. D. P., & Shepherd, S. G. (2012). Statistical maps of small‐scale electric field variability in the high‐latitude ionosphere. Journal of Geophysical Research, 117, A12304. doi: 10.1029/2012JA017929

14 Cousins, E. D. P., Matsuo, T., & Richmond, A. D. (2015). Mapping high‐latitude ionospheric electrodynamics with SuperDARN and AMPERE. Journal of Geophysical Research: Space Physics, 120, 5854–5870. doi: 10.1002/2014JA020463

15 Crowley, G. (1996). A critical review of ionospheric patches and blobs. In Review of Radio Science 1993–1996. New York.: Oxford University Press.

16 De la Beaujardière, O., Lyons, L. R., Ruohoniemi, J. M., Friis‐Christensen, E., Danielsen, C., Rich, F. J., & Newell, P. T. (1994). Quiet‐time intensifications along the poleward auroral boundary near midnight. Journal of Geophysical Research, 99(A1), 287–298. doi: 10.1029/93JA01947

17 Deng, Y., Maute, A., Richmond, A. D., & Roble, R. G. (2009). Impact of electric field variability on Joule heating and thermospheric temperature and density, Geophysical Research Letters, 36, L08105. doi: 10.1029/2008GL036916

18 Donovan, E., et al. (2006). The azimuthal evolution of the substorm expansive phase onset aurora. In M. Syrjäsuo & E. Donovan (Eds.), Proceedings of ICS‐8, (pp. 55–60). Calgary, Alberta, Canada: University of Calgary.

19 Drury, E. E., Mende, S. B., Frey, H. U., & Doolittle, J. H. (2003). Southern Hemisphere poleward moving auroral forms. Journal of Geophysical Research, 108, 1114. doi: 10.1029/2001JA007536, A3

20 Ebihara, Y., Miyoshi, Y., Asamura, K., & Hirahara, M. (2008). Microburst cusp ion precipitation observed with Reimei. Journal of Geophysical Research, 113, A03201. doi: 10.1029/2007JA012735

21 Fear, R. C., Trenchi, L., Coxon, J. C., & Milan, S. E. (2017). How much flux does a flux transfer event transfer? Journal of Geophysical Research: Space Physics, 122, 12,310–12,327. doi:10.1002/2017JA024730

22 Feldstein, Y. I., Dremukhina, L. A., Levitin, A. E., Mall, U., Alexeev, I. I., & Kalegaev, V. V. (2003). Energetics of the magnetosphere during the magnetic storm. Journal of Atmospheric and Solar‐Terrestrial Physics, 65, 429–446.

23 Forsyth, C., Fazakerley, A. N., Rae, I. J., Watt, C. E. J., Murphy, K., Wild, J. A., Karlsson, T., et al. (2014). In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge. Journal of Geophysical Research: Space Physics, 119, 927–946. doi: 10.1002/2013JA019302

24 Foster, J. C., et al. (2005). Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 110, A09S31. doi: 10.1029/2004JA010928

25 Frey, H. U., Immel, T. J., Lu, G., Bonnell, J., Fuselier, S. A., Mende, S. B., Hubert, B., et al. (2003). Properties of localized, high latitude, dayside aurora. Journal of Geophysical Research, 108, 8008. doi: 10.1029/2002JA009332, A4

26 Fujii, R., Hoffman, R. A., Anderson, P. C., Craven, J. D., Sugiura, M., Frank, L. A., & Maynard, N. C. (1994). Electrodynamic parameters in the nighttime sector during auroral substorms. Journal of Geophysical Research, 99(A4), 6093–6112. doi: 10.1029/93JA02210

27 Gabrielse, G., Nishimura, Y., Lyons, L., Gallardo‐Lacourt, B., Deng, Y., & Donovan, E. (2018). Statistical properties of mesoscale plasma flows in the nightside high‐latitude ionosphere. Journal of Geophysical Research, in press.

28 Gallardo‐Lacourt, B., Nishimura, Y., Lyons, L. R., Mishin, E. V., Ruohoniemi, J. M., Donovan, E. F., Angelopoulos, V., et al. (2017). Influence of auroral streamers on rapid evolution of ionospheric SAPS flows. Journal of Geophysical Research: Space Physics, 122, 12,406–12,420. doi:10.1002/2017JA024198

29 Gallardo‐Lacourt, B., Nishimura, Y., Lyons, L. R., Ruohoniemi, J. M., Donovan, E., Angelopoulos, V., McWilliams, K. A., et al. (2014b). Ionospheric flow structures associated with auroral beading at substorm auroral onset. Journal of Geophysical Research: Space Physics, 119, 9150–9159. doi: 10.1002/2014JA020298

30 Gallardo‐Lacourt, B., Nishimura,Y., Lyons, L. R., Zou, S., Angelopoulos, V., Donovan, E., McWilliams, K. A., et al. (2014a). Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers. Journal of Geophysical Research: Space Physics, 119, 142–150. doi: 10.1002/2013JA019245

31 Gjerloev, J. W., & Hoffman, R. A., Currents in auroral substorms. Journal of Geophysical Research, 107(A8). doi: 10.1029/2001JA000194, 2002

32 Golovchanskaya, I. V. (2008). Assessment of Joule heating for the observed distributions of high‐latitude electric fields. Geophysical Research Letters, 35, L16102. doi: 10.1029/2008GL034413

33 Golovchanskaya, I. V., & Kozelov, B. V. (2010). On the origin of electric turbulence in the polar cap ionosphere. Journal of Geophysical Research, 115, A09321. doi: 10.1029/2009JA014632

34 Gondarenko, N. A., & Guzdar, P. N. (2004). Plasma patch structuring by the nonlinear evolution of the gradient drift instability in the high‐latitude ionosphere. Journal of Geophysical Research, 109, A09301. doi: 10.1029/2004JA010504

35 Goodwin, L. V., Iserhienrhien, B., Miles, D. M., Patra, S., van derMeeren, C., Buchert, S. C., et al. (2015). Swarm in situ observations of F region polar cap patches created by cusp precipitation. Geophysical Research Letters, 42, 996–1003. doi: 10.1002/2014GL062610

36 Greenwald, R. A., Ruohoniemi, J. M., Bristow, W. A., Sofko, G. J., Villain, J.‐P., Huuskonen, A., Kokubun, S., et al. (1996). Mesoscale dayside convection vortices and their relation to substorm phase. Journal of Geophysical Research, 101(A10), 21697–21713. doi: 10.1029/96JA01639

37 Grubbs, G., II, Michell, R., Samara, M., Hampton, D., & Jahn, J.‐M. (2018). Predicting electron population characteristics in 2‐D using multispectral ground‐based imaging. Geophysical Research Letters, 45, 15–20. doi: 10.1002/2017GL075873

38 Hallinan, T. J., & Davis, T. N. (1970). Small‐scale auroral arc distortions. Planetary and Space Science, 18, 1735. doi:10.1016/0032‐0633(70)90007‐3

39 Hargreaves, J. K., Birch, M. J., & Evans, D. S. (2010). On the fine structure of medium energy electron fluxes in the auroral zone and related effects in the ionospheric D‐region. Annals of Geophysics, 28(5), 1107–1120. doi:10.5194/angeo‐28‐1107‐2010

40 Hatch, S. M., LaBelle, J., & Chaston, C. C. (2018). Storm phase‐partitioned rates and budgets of global Alfvénic energy deposition, electron precipitation, and ion outflow. Journal of Atmospheric and Solar‐Terrestrial Physics, 167, 1–12.

41 Henderson, M. G. (2013). Auroral substorms, poleward boundary activations, auroral streamers, omega bands, and onset precursor activity. In A. Keiling, E. Donovan, F. Bagenal & T. Karlsson (Eds.), Auroral phenomenology and magnetospheric processes: Earth and other planets. doi:10.1029/2011GM001165

42 Henderson, M. G., et al. (2006). Substorms during the 10–11 August 2000 sawtooth event. Journal of Geophysical Research, 111, A06206. doi: 10.1029/2005JA011366

43 Hosokawa, K., Milan, S. E., Lester, M., Kadokura, A., Sato, N., & Bjornsson, G. (2013). Large flow shears around auroral beads at substorm onset. Geophysical Research Letters, 40. doi:10.1002/grl.50958

44 Hosokawa, K., Moen, J. I., Shiokawa, K., & Otsuka, Y. (2011). Motion of polar cap arcs. Journal of Geophysical Research, 116, A01305. doi: 10.1029/2010JA015906

45 Hosokawa, K., Taguchi, S., & Ogawa, Y. (2016). Periodic creation of polar cap patches from auroral transients in the cusp. Journal of Geophysical Research: Space Physics, 121, 5639–5652. doi: 10.1002/2015JA022221

46 Huang, Y., Huang, C. Y., Su, Y.‐J., Deng, Y., & Fang, X. (2014). Ionization due to electron and proton precipitation during the August 2011 storm. Journal of Geophysical Research: Space Physics, 119, 3106–3116. doi: 10.1002/2013JA019671

47 Hull, A. J., Chaston, C. C., Frey, H. U., Fillingim, M. O., Goldstein, M. L., Bonnell, J. W., & Mozer, F. S. (2016). The “Alfvénic surge” at substorm onset/expansion and the formation of “Inverted Vs”: Cluster and IMAGE observations. Journal of Geophysical Research: Space Physics, 121, 3978–4004. doi: 10.1002/2015JA022000

48 Jiang, F., Strangeway, R. J., Kivelson, M. G., Weygand, J. M., Walker, R. J., Khurana, K. K., Nishimura, Y., et al. (2012). In situ observations of the “preexisting auroral arc” by THEMIS all sky imagers and the FAST spacecraft, Journal of Geophysical Research, 117, A05211. doi: 10.1029/2011JA017128

49 Jin, Y., Moen, J. I., & Miloch, W. J. (2014). GPS scintillation effects associated with polar cap patches and substorm auroral activity: Direct comparison. Journal of Space Weather and Space Climate, 4, A23. doi:10.1051/swsc/2014019

50 Jin, Y., Moen, J. I., Oksavik, K., Spicher, A., Clausen, L. B. N. & Miloch, W. J. (2017). GPS scintillations associated with cusp dynamics and polar cap patches. Journal of Space Weather and Space Climate, 7, A23.

51 Keady, J. P., & Heelis, R. A. (1999). Regional, scale size, and interplanetary magnetic field variability of magnetic field and ion drift structures in the high‐latitude ionosphere. Journal of Geophysical Research, 104(A1), 199–212. doi: 10.1029/98JA02613

52 Kepko, L., Spanswick, E., Angelopoulos, V., Donovan, E., McFadden, J., Glassmeier, K.‐H., Raeder, J., et al. (2009). Equatorward moving auroral signatures of a flow burst observed prior to auroral onset. Geophysical Research Letters, 36, L24104. doi: 10.1029/2009GL041476

53 Kivanç, Ö., & Heelis, R. A. (1997). Structures in ionospheric number density and velocity associated with polar cap ionization patches. Journal of Geophysical Research, 102(A1), 307–318. doi: 10.1029/96JA03141

54 Kivanç, Ö., & Heelis, R. A. (1999). On relationships between horizontal velocity structure and thermal ion upwellings at high latitudes. Geophysical Research Letters, 26, 1829–1832.

55 Knudsen, D. J., Donovan, E. F., Cogger, L. L., Jackel, B., & Shaw, W. D. (2001). Width and structure of mesoscale optical auroral arcs. Geophysical Research Letters, 28(4), 705–708. doi:10.1029/2000GL011969

56 Kornilova, T. A., & Kornilov, I. A. (2012). Counterstreaming auroral structures during substorm expansion. Journal of Geophysical Research, 117, A05328. doi: 10.1029/2011JA017309

57 Koustov, A., Hosokawa, K., Nishitani, N., Ogawa, T., & Shiokawa, K. (2008). Rankin Inlet PolarDARN radar observations of duskward moving Sun‐aligned optical forms. Annals of Geophysics, 26, 2711–2723. doi:10.5194/angeo‐26‐2711‐2008

58 Lockwood, M. (1991). The excitation of ionospheric convection. Journal of Atmospheric and Terrestrial Physics, 53, 177–199.

59 Lockwood, M., & Carlson, H. C., Jr. (1992). Production of polar cap electron density patches by transient magnetopause reconnection. Geophysical Research Letters, 19(17), 1731–1734. doi:10.1029/92GL01993

60 Lockwood, M., et al. (2001). Coordinated cluster, ground‐based instrumentation and low‐altitude satellite observations of transient poleward‐moving events in the ionosphere and in the tail lobe. Annals of Geophysics, 19(10/12), 1589–1612. doi:10.5194/angeo‐19‐1589‐2001

61 Lockwood, M., Moen, J., Van Eyken, A., Davies, J., Oksavik, K., & McCrea, I. (2005). Motion of the dayside polar cap boundary during substorm cycles: I. Observations of pulses in the magnetopause reconnection rate. Annals of Geophysics, 23(11), 3495–3511. doi:10.5194/angeo‐23‐3495‐2005

62 Lorentzen, D. A., Moen, J., Oksavik, K., Sigernes, F., Saito, Y., & Johnsen, M. G. (2010). In situ measurement of a newly created polar cap patch. Journal of Geophysical Research, 115, A12323. doi: 10.1029/2010JA015710

63 Lorentzen, D. A., Shumilov, N., & Moen, J. (2004). Drifting airglow patches in relation to tail reconnection. Geophysical Research Letters, 31, L02806. doi: 10.1029/2003GL017785

64 Lühr, H., Park, J., Gjerloev, J. W., Rauberg, J., Michaelis, I., Merayo, J. M. G., & Brauer, P. (2015). Field‐aligned currents' scale analysis performed with the Swarm constellation. Geophysical Research Letters, 42, 1–8. doi: 10.1002/2014GL062453

65 Lynch, K. A., et al. (2015). MICA sounding rocket observations of conductivity‐gradient‐generated auroral ionospheric responses: Small‐scale structure with large‐scale drivers. Journal of Geophysical Research: Space Physics, 120, 9661–9682. doi: 10.1002/2014JA020860

66 Lyons, L. R., et al. (2016a). The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric effects. Journal of Geophysical Research: Space Physics, 121, 10,880–10,897. doi: 10.1002/2016JA023237

67 Lyons, L. R., Nagai, T., Blanchard, G. T., Samson, J. C., Yamamoto, T., Mukai, T., Nishida, A., & Kokubun, S. (1999). Association between geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers. Journal of Geophysical Research, 104(A3), 4485–4500. doi: 10.1029/1998JA900140

68 Lyons, L. R., Nishimura, Y., & Zou, Y. (2016b). Unsolved problems: Mesoscale polar cap flow channels' structure, propagation, and effects on space weather disturbances. Journal of Geophysical Research: Space Physics, 121, 3347–3352. doi: 10.1002/2016JA022437

69 Lyons, L. R., Nishimura, Y., Donovan, E., & Angelopoulos, V. (2013). Distinction between auroral substorm onset and traditional ground magnetic onset signatures. Journal of Geophysical Research: Space Physics, 118, 4080–4092. doi: 10.1002/jgra.50384

70 Lyons, L. R., Nishimura, Y., Kim, H.‐J., Donovan, E., Angelopoulos, V., Sofko, G., Nicolls, M., et al. (2011). Possible connection of polar cap flows to pre‐ and post‐substorm onset PBIs and streamers. Journal of Geophysical Research, 116, A12225. doi: 10.1029/2011JA016850

71 MacDougall, J., & Jayachandran, P. T. (2007). Polar patches: Auroral zone precipitation effects. Journal of Geophysical Research, 112, A05312. doi: 10.1029/2006JA011930

72 Maggiolo, R., Echim, M., Wedlund, S., Zhang, Y., Fontaine, D., Lointier, G., & Trotignon, J.‐G. (2012). Polar cap arcs from the magnetosphere to the ionosphere: Kinetic modelling and observations by Cluster and TIMED. Annals of Geophysics, 30, 283–302. doi:10.5194/angeo‐30‐283‐2012

73 Maggs, J. E., & Davis, T. N. (1968). Measurements of the thicknesses of auroral structures. Planetary and Space Science, 16, 205–209.

74 Marghitu, O., Karlsson, T., Klecker, B., Haerendel, G., & McFadden, J. (2009). Auroral arc and oval electrodynamics in the Harang region. Journal of Geophysical Research, 114, A03214. doi: 10.1029/2008JA013630

75 Massetti, S. (2006). Antiparallel magnetic merging signatures during IMF BY ‐ 0: Longitudinal and latitudinal cusp aurora bifurcations. Annals of Geophysics, 24, 2299–2311.

76 Matsuoka, A., Tsuruda, K., Hayakawa, H., Mukai, T., & Nishida, A. (1996). Electric field structure and ion precipitation in the polar region associated with northward interplanetary magnetic field. Journal of Geophysical Research, 101(A5), 10711–10736. doi: 10.1029/95JA03557

77 Maynard, N. C., et al. (2006). Characteristics of merging at the magnetopause inferred from dayside 557.7 nm all‐sky images: IMF drivers of poleward moving auroral forms. Annals of Geophysics, 24, 3071–3098. doi:10.5194/angeo‐24‐3071‐2006

78 McGranaghan, R. M., Mannucci, A. J., & Forsyth, C. (2017). A comprehensiveanalysis of multiscale field‐alignedcurrents: Characteristics,controlling parameters, and relation‐ships. Journal of Geophysical Research:Space Physics, 122, 11,931–11,960. doi: 10.1002/2017JA024742

79 McWilliams, K. A., Yeoman, T. K., & Cowley, S. W. H. (2000). Two‐dimensional electric field measurements in the ionospheric footprint of a flux transfer event. Annales Geophysicae, 18(12), 1584–1598. doi:10.1007/s00585‐001‐1584‐2

80 Mella, M. R., Lynch, K. A., Hampton, D. L., Dahlgren, H., Kintner, P. M., Lessard, M., Lummerzheim, D., et al. (2011). Sounding rocket study of two sequential auroral poleward boundary intensifications. Journal of Geophysical Research, 116, A00K18. doi: 10.1029/2011JA016428

81 Milan, S. E., Lester, M., & Yeoman, T. K. (2002). HF radar polar patch formation revisited: Summer and winter variations in dayside plasma structuring. Annales Geophysicae, 20, 487–499.

82 Mishin, E., Nishimura, Y., & Foster, J. (2017). SAPS/SAID revisited: A causal relation to the substorm current wedge. Journal of Geophysical Research: Space Physics, 122, 8516–8535. doi: 10.1002/2017JA024263

83 Mitchell, E. J., Newell, P. T., Gjerloev, J. W., & Liou, K. (2013). OVATION‐SM: A model of auroral precipitation based on SuperMAG generalized auroral electrojet and substorm onset times. Journal of Geophysical Research: Space Physics, 118, 3747–3759. doi: 10.1002/jgra.50343

84 Moen, J., Carlson, H. C., & Sandholt, P. E. (1999). Continuous observation of cusp auroral dynamics in response to an IMF By polarity change. Geophysical Research Letters, 26(9), 1243–1246. doi:10.1029/1999GL900224

85 Moen, J., Gulbrandsen, N., Lorentzen, D. A., & Carlson, H. C. (2007). On the MLT distribution of F region polar cap patches at night. Geophysical Research Letters, 34, L14113. doi: 10.1029/2007GL029632

86 Moen, J., Oksavik, K., Alfonsi, L., Daabakk, Y., Romano, V., & Spogli, L. (2013). Space weather challenges of the polar cap ionosphere. Journal of Space Weather and Space Climate, 3, A02. doi:10.1051/SWSC/2013025

87 Moen, J., Rinne, Y., Carlson, H. C., Oksavik, K., Fujii, R., & Opgenoorth, H. (2008). On the relationship between thin Birkeland current arcs and reversed flow channels in the winter cusp/cleft ionosphere. Journal of Geophysical Research, 113, A09220. doi: 10.1029/2008JA013061

88 Motoba, T., Ohtani, S., Anderson, B. J., Korth, H., Mitchell, D., Lanzerotti, L. J., Shiokawa, K., et al. (2015). On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space‐ground observations. Journal of Geophysical Research: Space Physics, 120, 8707–8722. doi: 10.1002/2015JA021676

89 Mrak, S., Semeter, J., Hirsch, M., Starr, G., Hampton, D., Varney, R. H., et al. (2018). Field‐aligned GPS scintillation: Multisensor data fusion. Journal of Geophysical Research: Space Physics, 123, 974–992. doi:10.1002/2017JA024557

90 Neubert, T., & Christiansen, F. (2003). Small‐scale, field‐aligned currents at the top‐side ionosphere. Geophysical Research Letters, 30, 2010. doi: 10.1029/2003GL017808,19

91 Neudegg, D. A., Cowley, S. W. H., McWilliams, K. A., Lester, M., Yeoman, T. K., Sigwarth, J., et al. (2001). The UV aurora and ionospheric flows during flux transfer events. Annales Geophysicae, 19, 179–188. doi:10.5194/angeo‐19‐179‐2001

92 Newell, P. T., Sotirelis, T., Liou, K., Meng, C.‐I., & Rich, F. J. (2006). Cusp latitude and the optimal solar wind coupling function. Journal of Geophysical Research, 111, A09207. doi: 10.1029/2006JA011731

93 Newell, P. T., Xu, D., Meng, C.‐I., & Kivelson, M. G. (1997). Dynamical polar cap: A unifying approach. Journal of Geophysical Research, 102(A1), 127–139. doi:10.1029/96JA03045

94 Nishimura, Y., Bortnik, J., Li, W., Angelopoulos, V., Donovan, E. F., & Spanswick, E. L. (2018b). Comment on “Pulsating auroras produced by interactions of electrons and time domain structures” by Mozer et al. Journal of Geophysical Research: Space Physics, 123, 2064–2070. doi:10.1002/2017JA024844

95 Nishimura, Y., Bortnik, J., Li, W., Lyons, L. R., Donovan, E. F., Angelopoulos, V., & Mende, S. B. (2014b). Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows. Journal of Geophysical Research: Space Physics, 119, 5295–5304. doi: 10.1002/2014JA020029.1

96 Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Lyons, L. R., Angelopoulos, V., et al. (2010a). Identifying the driver of pulsating aurora. Science, 330(6000), 81–84. doi:10.1126/science.1193186

97 Nishimura, Y., Donovan, E., & Spanswick, E. (2018c). Dynamics of mesoscale electron precipitation and conductance in the nightside auroral oval. AGU Fall Meeting.

98 Nishimura, Y., et al. The active magnetosphere: Storms and substorms. In Magnetospheres in the Solar System. AGU Monograph on Solar/Heliosphere, in preparation.

99 Nishimura, Y., et al. (2014a). Day‐night coupling by a localized flow channel visualized by polar cap patch propagation. Geophysical Research Letters, 41, 3701–3709. doi: 10.1002/2014GL06030

100 Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V., & Mende, S. (2010b). Substorm triggering by new plasma intrusion: THEMIS all‐sky imager observations. Journal of Geophysical Research, 115, A07222. doi: 10.1029/2009JA015166

101 Nishimura, Y., Lyons, L. R., Kikuchi, T., Angelopoulos, V., Donovan, E. F., Mende, S. B., & Lühr, H. (2012). Relation of substorm pre‐onset arc to large‐scale field‐aligned current distribution. Geophysical Research Letters, 39, L22101. doi: 10.1029/2012GL053761

102 Nishimura, Y., Lyons, L. R., Kikuchi, T., Angelopoulos, V., Donovan, E. F., Mende, S. B., Chi, P. J., & Nagatsuma, T. (2013b). Reply to comment by Rae et al. on “Formation of substorm Pi2: A coherent response to auroral streamers and currents.” Journal of Geophysical Research: Space Physics, 118, 3497–3499. doi: 10.1002/jgra.50333

103 Nishimura, Y., Lyons, L. R., Shiokaw, K., Angelopoulos, V., Donovan, E. F., & Mende, S. B. (2013a). Substorm onset and expansion phase intensification precursors seen in polar cap patches and arcs. Journal of Geophysical Research: Space Physics, 118, 2034–2042. doi: 10.1002/jgra.50279

104 Nishimura, Y., Wang, B., Zou, Y., Donovan, E. F., Angelopoulos, V., Moen, J. I., Clausen, L. B., et al. (2018a). Transient solar wind‐magnetosphere‐ionosphere interaction associated with foreshock and magnetosheath transients and localized magnetopause reconnection. In Dayside magnetosphere interactions. AGU Monograph, in press.

105 Nishiyama, T., Miyoshi, Y., Katoh, Y., Sakanoi, T., Kataoka, R., & Okano, S. (2016). Substructures with luminosity modulation and horizontal oscillation in pulsating patch: Principal component analysis application to pulsating aurora. Journal of Geophysical Research: Space Physics, 121, 2360–2373. doi: 10.1002/2015JA022288

106 Oguti, T. (1973). Hydrogen emission and electron aurora at the onset of the auroral breakup. Journal of Geophysical Research, 78(31), 7543–7547. doi: 10.1029/JA078i031p07543

107 Ohtani, S., & Yoshikawa, A. (2016). The initiation of the poleward boundary intensification of auroral emission by fast polar cap flows: A new interpretation based on ionospheric polarization. Journal of Geophysical Research: Space Physics, 121, 10,910–10,928. doi: 10.1002/2016JA023143

108 Ohtani, S., Wing, S., Newell, P. T., & Higuchi, T. (2010). Locations of night‐side precipitation boundaries relative to R2 and R1 currents. Journal of Geophysical Research, 115, A10233. doi: 10.1029/2010JA015444

109 Oksavik, K., Ruohoniemi, J. M., Greenwald, R. A., Baker, J. B. H., Moen, J., Carlson, H. C., Yeoman, T. K., et al. (2006). Observations of isolated polar cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super Dual Auroral Radar Network (SuperDARN) Finland radars. Journal of Geophysical Research, 111, A05310. doi: 10.1029/2005JA011400

110 Oksavik, K., Søraas, F., Moen, J., Pfaff, R., Davies, J. A., & Lester, M. (2004). Simultaneous optical, CUTLASS HF radar, and FAST spacecraft observations: Signatures of boundary layer processes in the cusp. Annals of Geophysics, 22(2), 511–525. doi:10.5194/angeo‐22‐511‐2004

111 Oksavik, K., van der Meeren, C., Lorentzen, D. A., Baddeley, L. J., & Moen, J. (2015). Scintillation and loss of signal lock from poleward moving auroral forms in the cusp ionosphere. Journal of Geophysical Research: Space Physics, 120, 9161–9175. doi: 10.1002/2015JA021528

112 Opgenoorth, H. J., Pellinen, R. J., Baumjohann, W., Nielsen, E., Marklund, G., & Eliasson, L. (1983). Three‐dimensional current flow and particle precipitation in a westward travelling surge (observed during the Barium‐Geos Rocket Experiment). Journal of Geophysical Research, 88(A4), 3138–3152. doi: 10.1029/JA088iA04p03138

113 Oppenheim, M. M., & Dimant, Y. S. (2013). Kinetic simulations of 3‐D Farley‐Buneman turbulence and anomalous electron heating. Journal of Geophysical Research: Space Physics, 118, 1306–1318. doi: 10.1002/jgra.50196

114 Østgaard, N., Germany, G., Stadsnes, J., & Vondrak, R. R. (2002a). Energy analysis of substorms based on remote sensing techniques, solar wind measurements, and geomagnetic indices. Journal of Geophysical Research, 107(A9), 1233. doi: 10.1029/2001JA002002

115 Østgaard, N., Vondrak, R. R., Gjerloev, J. W., & Germany, G. (2002b). A relation between the energy deposition by electron precipitation and geomagnetic indices during substorms. Journal of Geophysical Research, 107(A9), 1246. doi: 10.1029/2001JA002003

116 Partamies, N., Janhunen, P., Kauristie, K., Makinen, S., & Sergienko, T. (2004). Testing an inversion method for estimating electron energy fluxes from all‐sky camera images. Annals of Geophysics, 22, 1961–1971.

117 Partamies, N., Syrjäsuo, M., Donovan, E., Connors, M., Charrois, D., Knudsen, D., & Kryzanowsky, Z. (2010). Observations of the auroral width spectrum at kilometre‐scale size. Annals of Geophysics, 28, 711–718.

118 Perry, G. W., Dahlgren, H., Nicolls, M. J., Zettergren, M., St. Maurice, J.‐P., Semeter, J. L., Sundberg, T., et al. (2015). Spatiotemporally resolved electrodynamic properties of a Sun‐aligned arc over Resolute Bay. Journal of Geophysical Research: Space Physics, 120, 9977–9987. doi: 10.1002/2015JA021790

119 Pitkänen, T., Aikio, A. T., Amm, O., Kauristiev K., Nilsson, H., & Kaila, K. U. (2011). Eiscat‐Cluster observations of quiet‐time near‐Earth magnetotail fast flows and their signatures in the ionosphere. Annals of Geophysics, 29(2), 299–319. doi:10.5194/angeo‐29‐299‐2011

120 Pitout, F., Newell, P. T., & Buchert, S. C. (2002). Simultaneous high‐ and low‐latitude reconnection: ESR and DMSP observations. Annals of Geophysics, 20, 1311–1320. doi:10.5194/angeo‐20‐1311‐2002

121 Prikryl, P., Jayachandran, P. T., Chadwick, R., & Kelly, T. D. (2015). Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Annals of Geophysics, 33, 531–545. doi:10.5194/angeo‐33‐531‐2015

122 Rees, M. H., & Luckey, D. (1974). Auroral electron energy derived from ratio of spectroscopic emissions: 1. Model computations. Journal of Geophysical Research, 79(34), 5181–5186. doi: 10.1029/JA079i034p05181

123 Robinson, R. M., & Mende, S. B. (1990). Ionization and electric field properties of auroral arcs during magnetic quiescence. Journal of Geophysical Research, 95(A12), 21111–21121. doi: 10.1029/JA095iA12p21111

124 Robinson, R. M., Vondrak, R. R., & Friis‐Christensen, E. (1987). Ionospheric currents associated with a Sun‐aligned arc connected to the auroral oval. Geophysical Research Letters, 14, 656–659. doi:10.1029/GL014i006p00656

125 Rodger, A. S., Pinnock, M., Dudeney, J. R., Baker, K. B., & Greenwald, R. A. (1994). A new mechanism for polar patch formation. Journal of Geophysical Research, 99(A4), 6425–6436. doi: 10.1029/93JA01501

126 Rother, M., Schlegel, K., & Lühr, H. (2007). CHAMP observation of intense kilometer‐scale field‐aligned currents, evidence for an ionospheric Alfven resonator. Annales Geophysicae‐Germany, 25(7), 1603–1615. doi:10.5194/angeo‐25‐1603‐2007

127 Sandholt, P. E., & Farrugia, C. J. (2003). Does the aurora provide evidence for the occurrence of antiparallel magnetopause reconnection? Journal of Geophysical Research, 108, 1466. doi:10.1029/2003JA010066, A12

128 Sandholt, P. E., & Farrugia, C. J. (2007). Poleward moving auroral forms (PMAFs) revisited: Responses of aurorae, plasma convection and Birkeland currents in the pre‐ and postnoon sectors under positive and negative IMF By conditions. Annales de Geophysique, 25(7), 1629–1652. doi:10.5194/angeo‐25‐1629‐2007

129 Sandholt, P. E., & Farrugia, C. J. (2008). The role of external triggers in flow shear arcs in the dayside aurora. Annals of Geophysics, 26, 2159–2177. doi:10.5194/angeo‐26‐2159‐2008

130 Sandholt, P. E., Farrugia, C. J., Denig, W. F., Cowley, S. W. H., & Lester, M. (2003). Spontaneous and driven cusp dynamics: Optical aurora, particle precipitation, and plasma convection. Planetary and Space Science, 51(12), 797–812. doi:10.1016/S0032‐0633(03)00114‐4

131 Sandholt, P. E., Farrugia, C. J., Moen, J., Noraberg, Ø., Lybekk, B., Sten, T., & Hansen, T. (1998). A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation. Journal of Geophysical Research, 103(A10), 23325–23345. doi: 10.1029/98JA02156

132 Schlegel, K., & St. Maurice, J. P. (1981). Anomalous heating of the polar E region by unstable plasma waves: 1. Observations. Journal of Geophysical Research, 86(A3), 1447–1452. doi: 10.1029/JA086iA03p01447

133 Sergeev, V. A., Liou, K., Newell, P. T., Ohtani, S.‐I., Hairston, M. R., & Rich, F. (2004). Auroral streamers: Characteristics of associated precipitation, convection and field‐aligned currents. Annals of Geophysics, 22, 537–548. doi:10.5194/angeo‐22‐537‐2004

134 Shi, Y., Zesta, E., Lyons, L. R., Yang, J., Boudouridis, A., Ge, Y. S., Ruohoniemi, J. M., et al. (2012). Two‐dimensional ionospheric flow pattern associated with auroral streamers. Journal of Geophysical Research, 117, A02208. doi: 10.1029/2011JA017110

135 Shiokawa, K., et al. (2014). Auroral fragmentation into patches. Journal of Geophysical Research: Space Physics, 119, 8249–8261. doi: 10.1002/2014JA020050

136 Shiokawa, K., Yumoto, K., Nishitani, N., Hayashi, K., Oguti, T., McEwen, D. J., Kiyama, Y., et al. (1996). Quasi‐periodic poleward motions of Sun‐aligned auroral arcs in the high‐latitude morning sector: A case study. Journal of Geophysical Research, 101(A9), 19789–19800. doi: 10.1029/96JA01202

137 Smith, A. M., Pryse, S. E., & Kersley, L. (2000). Polar patches observed by ESR and their possible origin in the cusp region. Annals of Geophysics, 18, 1043–1053. doi:10.1007/s00585‐000‐1043‐5

138 Sojka, J. J., & Schunk, R. W. (1988). A model study of how electric field structures affect the polar cap F region. Journal of Geophysical Research, 93(A2), 884–896. doi: 10.1029/JA093iA02p00884

139 Sojka, J. J., Bowline, M. D., & Schunk, R. W. (1994). Patches in the polar ionosphere: UT and seasonal dependence. Journal of Geophysical Research, 99(A8), 14959–14970. doi: 10.1029/93JA03327

140 Spicher, A., Ilyasov, A. A., Miloch, W. J., Chernyshov, A. A., Clausen, L. B. N., Moen, J. I., Abe, T., et al. (2016). Reverse flow events and small‐scale effects in the cusp ionosphere. Journal of Geophysical Research: Space Physics, 121, 10,466–10,480. doi: 10.1002/2016JA022999

141 Stenbaek‐Nielsen, H., Hallinan, T., Osborne, D., Kimball, J., Chaston, C., McFadden, J., et al. (1998). Aircraft observations conjugate to FAST: Auroral are thicknesses. Geophysical Research Letters, 25(12), 2073–2076.

142 Stenbaek‐Nielsen, H., Hallinan, T., & Peticolas, L. (1999). Why do auroras look the way they do? Transactions of the American Geophysical Union (EOS), 80, 193–199.

143 Taguchi, S., Sugiura, M., Iyemori, T., Winningham, J. D., & Slavin, J. A. (1995). Highly structured ionospheric convection for northward interplanetary magnetic field: A case study with DE 2 observations. Journal of Geophysical Research, 100(A8), 14743–14753. doi: 10.1029/94JA03373

144 Tanaka, H., Saito, Y., Asamura, K., Ishii, S., & Mukai, T. (2005). High time resolution measurement of multiple electron precipitations with energy‐time dispersion in high‐latitude part of the cusp region. Journal of Geophysical Research, 110, A07204. doi: 10.1029/2004JA010664

145 Thomas, E. G., Baker, J. B. H., Ruohoniemi, J. M., Clausen, L. B. N., Coster, A. J., Foster, J. C., & Erickson, P. J. (2013). Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. Journal of Geophysical Research: Space Physics, 118, 1180–1189. doi: 10.1002/jgra.50116

146 Valladares, C. E., Carlson, H. C., Jr., & Fukui, K. (1994). Interplanetary magnetic field dependency of stable sun‐aligned polar cap arcs. Journal of Geophysical Research, 99(A4), 6247–6272. doi: 10.1029/93JA03255

147 Van der Meeren, C., Oksavik, K., Lorentzen, D., Moen, J. I., & Romano, V. (2014). GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. Journal of Geophysical Research: Space Physics, 119, 8624–8636. doi: 10.1002/2014JA020114

148 Van der Meeren, C., Oksavik, K., Lorentzen, D. A., Rietveld, M. T., & Clausen, L. B. N. (2015). Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora. Journal of Geophysical Research: Space Physics, 120, 10,607–10,621. doi: 10.1002/2015JA021819

149 Voronkov, I. O., Donovan, E. F., & Samson, J. C. (2003). Observations of the phases of the substorm. Journal of Geophysical Research, 108, 1073. doi: 10.1029/2002JA009314, A2

150 Walker, I. K., Moen, J., Kersley, L., & Lorentzen, D. A. (1999). On the possible role of cusp/cleft precipitation in the formation of polar‐cap patches. Annals of Geophysics, 17(10), 1298–1305. doi:10.1007/s00585‐999‐1298‐4

151 Wang, B., Nishimura, Y., Lyons, L. R., Zou, Y., Carlson, H. C., Frey, H. U., & Mende, S. B. (2016b). Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all‐sky imager and DMSP: 3. Space science. Earth, Planets and Space 68(1), 150. doi:10.1186/s40623‐016‐0524‐z

152 Wang, B., Nishimura, Y., Zou, Y., Lyons, L. R., Angelopoulos, V., Frey, H., & Mende, S. (2016a). Investigation of triggering of poleward moving auroral forms using satellite‐imager coordinated observations. Journal of Geophysical Research: Space Physics, 121, 10,929–10,941. doi: 10.1002/2016JA023128

153 Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., et al. (2011). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalentcurrents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. doi:10.1029/2010JA016177

154 Wiltberger, M., et al. (2017). Effects of electrojet turbulence on a magnetosphere‐ionosphere simulation of a geomagnetic storm. Journal of Geophysical Research: Space Physics, 122, 5008–5027. doi: 10.1002/2016JA023700

155 Wu, J., Knudsen, D. J., Gillies, D. M., Donovan, E. F., & Burchill, J. K. (2017). Swarm observation of field‐aligned currents associated with multiple auroral arc systems. Journal of Geophysical Research: Space Physics, 122, 10,145–10,156. doi:10.1002/2017JA024439

156 Xing, Z. Y., Yang, H. G., Han, D. S., Wu, Z. S., Hu, Z. J., Zhang, Q. H., et al. (2012). Poleward moving auroral forms (PMAFs) observed at the Yellow River Station: A statistical study of its dependence on the solar wind conditions. Journal of Atmospheric and Solar‐Terrestrial Physics, 86, 25–33. doi:10.1016/j.jastp.2012.06.004

157 Yiğit, E., & Ridley, A. J. (2011). Effects of high‐latitude thermosphere heating at various scale sizes simulated by a nonhydrostatic global thermosphere‐ionosphere model. Journal of Atmospheric and Terrestrial Physics, 73, 592–600. doi:10.1016/j.jastp.2010.12.003

158 Yin, P., Mitchell, C.‐N., Spencer, P., McCrea, I., & Pedersen, T. (2008). A multi‐diagnostic approach to understanding high‐latitude plasma transport during the Halloween 2003 storm. Annals of Geophysics, 26, 2739–2747. doi:10.5194/angeo‐26‐2739‐2008

159 Zettergren, M., Lynch, K., Hampton, D., Nicollsv M., Wright, B., Conde, M., Moen, J., et al. (2014). Auroral ionospheric F region density cavity formation and evolution: MICA campaign results. Journal of Geophysical Research: Space Physics, 119, 3162–3178. doi: 10.1002/2013JA019583

160 Zhang, B., Brambles, O., Lotko, W., Dunlap‐Shohl, W., Smith, R., Wiltberger, M., & Lyon, J. (2013a). Predicting the location of polar cusp in the Lyon‐Fedder‐Mobarry global magnetosphere simulation. Journal of Geophysical Research: Space Physics, 118, 6327–6337. doi:10.1002/jgra.50

161 Zhang, Q. ‐H., et al. (2013b). Direct observations of the evolution of polar cap ionization patches. Science, 339, 1597–1600. doi:10.1126/science.1231487.565

162 Zhang, Q.‐H., et al. (2017). Polar cap hot patches: Enhanced density structures different from the classical patches in the ionosphere. Geophysical Research Letters, 44, 8159–8167. doi: 10.1002/2017GL073439

163 Zhu, Q., et al. (2018). Small‐ and mesoscale variabilities in the electric field and the particle precipitation and their impacts on Joule heating. Submitteed to Journal of Geophysical Research.

164 Zou, Y., et al. (2016). Localized field‐aligned currents in the polar cap associated with airglow patches. Journal of Geophysical Research: Space Physics, 121, 10,172–10,189. doi: 10.1002/2016JA022665

165 Zou, Y., Nishimura, Y., Lyons, L. R., & Shiokawa, K. (2017). Localized polar cap precipitation in association with nonstorm time airglow patches. Geophysical Research Letters, 44, 609–617. doi: 10.1002/2016GL071168

166 Zou, Y., Nishimura, Y., Lyons, L. R., Donovan, E. F., Ruohoniemi, J. M., Nishitani, N., & McWilliams, K. A. (2014). Statistical relationships between enhanced polar cap flows and PBIs. Journal of Geophysical Research: Space Physics, 119, 151–162. doi: 10.1002/2013JA019269

167 Zou, Y., Nishimura, Y., Lyons, L. R., Donovan, E. F., Shiokawa, K., Ruohoniemi, J. M., McWilliams, K. A., et al. (2015b). Polar cap precursor of nightside auroral oval intensifications using polar cap arcs. Journal of Geophysical Research: Space Physics, 120, 10,698–10,711. doi: 10.1002/2015JA021816

168 Zou, Y., Nishimura, Y., Lyons, L. R., Shiokawa, K., Donovan, E. F., Ruohoniemi, J. M., McWilliams, K. A., et al. (2015a). Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection. Journal of Geophysical Research: Space Physics, 120, 4064–4078. doi: 10.1002/2014JA020946

Space Physics and Aeronomy, Ionosphere Dynamics and Applications

Подняться наверх