Читать книгу Uric Acid in Chronic Kidney Disease - Группа авторов - Страница 38
References
Оглавление1 Davis NS: The cardio-vascular and renal relations and manifestations of gout. JAMA 1897;XXIX:261–262.
2 McBride MB, et al: Presymptomatic detection of familial juvenile hyperuricaemic nephropathy in children. Pediatr Nephrol 1998;12:357–364.
3 McBride MB, et al: Efficacy of allopurinol in ameliorating the progressive renal disease in familial juvenile hyperuricaemic nephropathy (FJHN). A six-year update. Adv Exp Med Biol 1998;431:7–11.
4 Fairbanks LD, et al: Early treatment with allopurinol in familial juvenile hyerpuricaemic nephropathy (FJHN) ameliorates the long-term progression of renal disease. QJM 2002;95:597–607.
5 Wu X, et al: Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci 1994;91:742–746.
6 Mazzali M, et al: Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001;38:1101–1106.
7 Mazzali M, et al: Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol 2002;282:F991–F997.
8 Watanabe S, et al: Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 2002;40:355–360.
9 Kang DH, et al: A role for uric acid in the progression of renal disease. J Am Soc Nephrol 2002;13:2888–2897.
10 Mazzali M, et al: Hyperuricemia exacerbates chronic cyclosporine nephropathy. Transplantation 2001;71:900–905.
11 Komers R, et al: Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol 2016;173:2573–2588.
12 Omori H, et al: Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin Exp Nephrol 2012;16:549–556.
13 Tsuda H, et al: Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun 2012;427:266–272.
14 Sanchez-Lozada LG, et al: Glomerular hemodynamic changes associated with arteriolar lesions and tubulointerstitial inflammation. Kidney Int Suppl 2003;86:S9–S14.
15 Sanchez-Lozada LG, et al: Mild hyperuricemia induces glomerular hypertension in normal rats. Am J Physiol Renal Physiol 2002;283:F1105–F1110.
16 Sanchez-Lozada LG, et al: Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 2005;67:237–247.
17 Kohagura K, et al: An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens Res 2013;36:43–49.
18 Uedono H, et al: Relationship between serum uric acid levels and intrarenal hemodynamic parameters. Kidney Blood Press Res 2015;40:315–322.
19 Geraci G, et al: Association between uric acid and renal hemodynamics: pathophysiological implications for renal damage in hypertensive patients. J Clin Hyperten 2016;18:1007–1014.
20 Mandal A, Mount DB: The molecular physiology of uric acid homeostasis. Ann Rev Physiol 2015;77:1–23.
21 Johnson RJ, et al: Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant 2013;28:2221–2228.
22 Wu W, Dnyanmote AV, Nigam SK: Remote communication through solute carriers and ATP binding cassette drug transporter pathways: An update on the remote sensing and signaling hypothesis. Mol Pharmacol 2011;79:795–805.
23 Dalbeth N, et al: Influence of the ABCG2 gout risk 141 K allele on urate metabolism during a fructose challenge. Arthritis Res Ther 2014;16:1–9.
24 Lanaspa MA, et al: Uric acid and fructose: potential biological mechanisms. Semin Nephrol 2011;31:426–432.
25 Nourbakhsh N, Singh P: Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury. Nephron Clin Pract 2014;127:149–152.
26 Basile DP, Yoder MC: Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Dis Drug Targets 2014;14:3–14.
27 Cristobal-Garcia M, et al: Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension. Oxid Med Cell Longev 2015;2015:535686.
28 Gibbings S, et al: Xanthine oxidoreductase promotes the inflammatory state of mononuclear phagocytes through effects on chemokine expression, peroxisome proliferator-activated receptor-{gamma} sumoylation, and HIF-1{alpha}. J Biol Chem 2011;286:961–975.
29 Martillo MA, Nazzal L, Crittenden DB: The Crystallization of Monosodium Urate. Curr Rheumatol Rep 2014;16:400.
30 Roncal-Jimenez C, et al: Heat stress nephropathy from exercise-induced uric acid crystalluria: a perspective on mesoamerican nephropathy. Am J Kidney Dis 2016;67:20–30.
31 Rock KL, Kataoka H, Lai JJ: Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol 2012;9:13–23.
32 Wijkström J, et al: Clinical and pathological characterization of Mesoamerican nephropathy: a new kidney disease in Central America. Am J Kidney Dis 2013;62:908–918.
33 López-Marín L, et al: Histopathology of chronic kidney disease of unknown etiology in Salvadoran agricultural communities. MEDICC Rev 2014;16:49–54.
34 Kupferman J, et al: Characterization of mesoamerican nephropathy in a kidney failure hotspot in nicaragua. Am J Kidney Dis 2016;68:716–725.
35 Schwarzschild MA, et al: Urate and neuroprotection trials. Lancet Neurol 2014;13:758.
L. Gabriela Sánchez-Lozada, PhD
Laboratory of Renal Physiopathology, Department of Nephrology
Instituto Nacional de Cardiología Ignacio Chávez
Juan Badiano No 1. Sección XVI
14080 Tlalpan, Mexico City (Mexico)
E-Mail lgsanchezlozada@gmail.com