Читать книгу Oral Biofilms - Группа авторов - Страница 82

References

Оглавление

1Ceri H, et al: The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999;37:1771–1776.

2Goeres DM, et al: Statistical assessment of a laboratory method for growing biofilms. Microbiology 2005;151:757–762.

3Hall Snyder AD, et al: Evaluation of high-dose daptomycin versus vancomycin alone or combined with clarithromycin or rifampin against Staphylococcus aureusand S. epidermidis in a novel in vitro PK/PD model of bacterial biofilm. Infect Dis Ther 2015;4:51–65.

4Basas J, et al: High-dose daptomycin is effective as an antibiotic lock therapy in a rabbit model of Staphylococcus epidermidis catheter-related infection. Antimicrob Agents Chemother 2018;62:e01777-17.

5Li Y, et al: Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 2014;58:7586–7591.

6Chan CL, et al: Alloicoccus otidis forms multispecies biofilm with Haemophilus influenzae: effects on antibiotic susceptibility and growth in adverse conditions. Front Cell Infect Microbiol 2017;7:344.

7Eick S, Seltmann T, Pfister W: Efficacy of antibiotics to strains of periodontopathogenic bacteria within a single species biofilm – an in vitro study. J Clin Periodontol 2004;31:376–383.

8Lobo MM, et al: In vitro evaluation of caries inhibition promoted by self-etching adhesive systems containing antibacterial agents. J Biomed Mater Res B Appl Biomater 2005;75:122–127.

9Soukos NS, et al: Photodestruction of human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model. Lasers Surg Med 2003;33:161–168.

10Berg CH, et al: Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. Eur J Oral Sci 2001;109:316–324.

11Thurnheer T, et al: Static biofilm removal around ultrasonic tips in vitro. Clin Oral Investig 2014;18:1779–1784.

12Lynch RJ, ten Cate JM: Effect of calcium glycerophosphate on demineralization in an in vitro biofilm model. Caries Res 2006;40:142–147.

13Pirracchio L, et al: Activity of taurolidine gels on ex vivo periodontal biofilm. Clin Oral Investig 2018;22:2031–2037.

14Agnello M, et al: Arginine improves pH homeostasis via metabolism and microbiome modulation. J Dent Res 2017;22034517707512.

15Pratten J, et al: In vitro studies of the effect of antiseptic-containing mouthwashes on the formation and viability of Streptococcus sanguis biofilms. J Appl Microbiol 1998;84:1149–1155.

16Sedlacek MJ, Walker C: Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol 2007;22:333–339.

17Sennhenn-Kirchner S, et al: Decontamination efficacy of antiseptic agents on in vivo grown biofilms on rough titanium surfaces. Quintessence Int 2009;40:e80–e88.

18Ingendoh-Tsakmakidis A, et al: Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol 2019;21:e13078.

19Eick S, et al: Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses against periodontopathogenic microorganisms. Quintessence Int 2011;42:687–700.

20Jurczyk K, et al: In-vitro activity of sodium-hypochlorite gel on bacteria associated with periodontitis. Clin Oral Investig 2016;20:2165–2173.

21Hagi TT, et al: A biofilm pocket model to evaluate different non-surgical periodontal treatment modalities in terms of biofilm removal and reformation, surface alterations and attachment of periodontal ligament fibroblasts. PLoS One 2015;10:e0131056.

22Hope CK, Wilson M: Effects of dynamic fluid activity from an electric toothbrush on in vitro oral biofilms. J Clin Periodontol 2003;30:624–629.

23Pan PC, et al: In-vitro evidence for efficacy of antimicrobial mouthrinses. J Dent 2010;38 (Suppl 1):S16–S20.

24Guggenheim B, Meier A: In vitro effect of chlorhexidine mouth rinses on polyspecies biofilms. Schweiz Monatsschr Zahnmed 2011;121:432–441.

25Sherry L, et al: Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. BMC Oral Health 2013;13:47.

26Bottino MC, et al: Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig 2014;18:2151–2158.

27Tepper B, et al: In vitro method for prediction of plaque reduction by dentifrice. J Microbiol Methods 2015;118:85–92.

28Jasberg H, et al: Bifidobacteria inhibit the growth of Porphyromonas gingivalis but not of Streptococcus mutans in an in vitro biofilm model. Eur J Oral Sci 2016;124:251–258.

29Pratten J, et al: Physical disruption of oral biofilms by sodium bicarbonate: an in vitro study. Int J Dent Hyg 2016;14:209–214.

30Carter K, Landini G, Walmsley AD: Plaque removal characteristics of electric toothbrushes using an in vitro plaque model. J Clin Periodontol 2001;28:1045–1049.

31Arnold WH, et al: The in vitro effect of fluoridated milk in a bacterial biofilm–enamel model. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2006;150:63–69.

32Seemann R, Kluck I, Kage A: An in vitro microbial-based model for studying caries-preventive agents. Acta Odontol Scand 2006;64:27–30.

33Steinberg D, Tal T, Friedman M: Sustained-release delivery systems of triclosan for treatment of Streptococcus mutans biofilm. J Biomed Mater Res B Appl Biomater 2006;77:282–286.

34Zanin IC, et al: Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur J Oral Sci 2006;114:64–69.

35Knight GM, et al: The inability of Streptococcus mutans and Lactobacillus acidophilus to form a biofilm in vitro on dentine pretreated with ozone. Aust Dent J 2008;53:349–353.

36Chen F, et al: Tooth-binding micelles for dental caries prevention. Antimicrob Agents Chemother 2009;53:4898–4902.

37Sullivan R, et al: Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: targeted elimination of Streptococcus mutans and prevention of demineralization. Caries Res 2011;45:415–428.

38Zaura E, et al: The effects of fractions from shiitake mushroom on composition and cariogenicity of dental plaque microcosms in an in vitro caries model. J Biomed Biotechnol 2011;2011:135034.

39Falsetta ML, et al: Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo. Antimicrob Agents Chemother 2012;56:6201–6211.

40Huang X, Exterkate RA, ten Cate JM: Factors associated with alkali production from arginine in dental biofilms. J Dent Res 2012;91:1130–1134.

41Bueno-Silva B, et al: Effect of neovestitol-vestitol containing Brazilian red propolis on accumulation of biofilm in vitro and development of dental caries in vivo. Biofouling 2013;29:1233–1242.

42Pereira CA, et al: Photodynamic inactivation of Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Lasers Med Sci 2013;28:859–864.

43Yamakami K, et al: Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucan-biofilm synthesis by Streptococcus mutans. Pharm Biol 2013;51:267–270.

44Zhao W, et al: The preventive effect of grape seed extract on artificial enamel caries progression in a microbial biofilm-induced caries model. J Dent 2014;42:1010–1018.

45Giacaman RA, Jobet-Vila P, Munoz-Sandoval C: Fatty acid effect on sucrose-induced enamel demineralization and cariogenicity of an experimental biofilm-caries model. Odontology 2015;103:169–176.

46Ionescu AC, et al: Silver-polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. J Dent 2015:43:1483–1490.

47Pan W, et al: A new small molecule inhibits Streptococcus mutans biofilms in vitro and in vivo. J Appl Microbiol 2015;119:1403–1411.

48Ren Z, et al: Molecule targeting gluco­syltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob Agents Chemother 2015;60:126–135.

49Fernandez CE, et al: Effect of fluoride-containing toothpastes on enamel demineralization and Streptococcus mutans biofilm architecture. Caries Res 2016;50:151–158.

50Kulshrestha S, et al: Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol 2016;100:1901–1914.

51Yang H, et al: Antibiofilm activities of a novel chimeolysin against Streptococcus mutans under physiological and cariogenic conditions. Antimicrob Agents Chemother 2016;60:7436–7443.

52Nascimento P, et al: Addition of ammonium-based methacrylates to an experimental dental adhesive for bonding metal brackets: carious lesion development and bond strength after cariogenic challenge. Am J Orthod Dentofacial Orthop 2017;151:949–956.

53Krzysciak W, et al: Effect of a Lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm. Nutrients 2017;9:1242.

54Dashper SG, et al: CPP-ACP promotes SnF2 efficacy in a polymicrobial caries model. J Dent Res 2019;98:218–224.

55Heersema LA, Smyth HDC: A multispecies biofilm in vitro screening model of dental caries for high-throughput susceptibility testing. High Throughput 2019;8:14.

56Grundling GL, et al: Effect of ultrasonics on Enterococcus faecalis biofilm in a bovine tooth model. J Endod 2011;37:1128–1133.

57Frater M, et al: In vitro efficacy of different irrigating solutions against polymicrobial human root canal bacterial biofilms. Acta Microbiol Immunol Hung 2013;60:187–199.

58Lin J, Shen Y, Haapasalo M: A comparative study of biofilm removal with hand, rotary nickel-titanium, and self-adjusting file instrumentation using a novel in vitro biofilm model. J Endod 2013;39:658–663.

59Frough Reyhani M, et al: Evaluation of antimicrobial effects of different concentrations of triple antibiotic paste on mature biofilm of Enterococcus faecalis. J Dent Res Dent Clin Dent Prospects 2015;9:138–143.

60Marinic K, et al: Repeated exposures to blue light-activated eosin Y enhance inactivation of E. faecalis biofilms, in vitro. Photodiagnosis Photodyn Ther 2015;12:393–400.

61Sabino CP, et al: Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals. Lasers Med Sci 2015;30:1657–1665.

62Albuquerque MTP, Nagata J, Bottino MC: Antimicrobial efficacy of triple antibiotic-eluting polymer nanofibers against multispecies biofilm. J Endod 2017;43:S51–S56.

63Tamura A, et al: The effects of antibiotics on in vitro biofilm model of periodontal disease. Eur J Med Res 2008;13:439–445.

64Wakabayashi H, et al: Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrob Agents Chemother 2009;53:3308–3316.

65Daep CA, et al: Selective substitution of amino acids limits proteolytic cleavage and improves the bioactivity of an anti-biofilm peptide that targets the periodontal pathogen, Porphyromonas gingivalis. Peptides 2010;31:2173–2178.

66Hua J, Scott RW, Diamond G: Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity. Mol Oral Microbiol 2010;25:426–432.

67Nastri L, et al: Effects of toluidine blue-mediated photodynamic therapy on periopathogens and periodontal biofilm: in vitro evaluation. Int J Immunopathol Pharmacol 2010;23:1125–1132.

68Pappen FG, et al: In vitro antibacterial action of Tetraclean, MTAD and five experimental irrigation solutions. Int Endod J 2010;43:528–535.

69Ciric L, et al: In vitro assessment of shiitake mushroom (Lentinula edodes) extract for its antigingivitis activity. J Biomed Biotechnol 2011;2011:507908.

70Maezono H, et al: Antibiofilm effects of azithromycin and erythromycin on Porphyromonas gingivalis. Antimicrob Agents Chemother 2011;55:5887–5892.

71Suci P, Young M: Selective killing of Aggregatibacter actinomycetemcomitans by ciprofloxacin during development of a dual species biofilm with Streptococcus sanguinis. Arch Oral Biol 2011;56:1055–1063.

72Ledder RG, McBain AJ: An in vitro comparison of dentifrice formulations in three distinct oral microbiotas. Arch Oral Biol 2012;57:139–147.

73Sanchez MC, et al: Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med Oral Patol Oral Cir Bucal 2013;18:e86–e92.

74Belibasakis GN, Thurnheer T: Validation of antibiotic efficacy on in vitro subgingival biofilms. J Periodontol 2014;85:343–348.

75Millhouse E, et al: Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health 2014;14:80.

76Song X, et al: Antimicrobial action of minocycline microspheres versus 810-nm diode laser on human dental plaque microcosm biofilms. J Periodontol 2014;85:335–342.

77Tamanai-Shacoori Z, et al: Silver-zeolite combined to polyphenol-rich extracts of Ascophyllum nodosum: potential active role in prevention of periodontal diseases. PLoS One 2014;9:e105475.

78Wongsariya K, et al: Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases. Pharm Biol 2014;52:273–280.

79Fontana CR, et al: The effect of blue light on periodontal biofilm growth in vitro. Lasers Med Sci 2015;30:2077–2086.

80Soares GM, et al: Effects of azithromycin, metronidazole, amoxicillin, and metronidazole plus amoxicillin on an in vitro polymicrobial subgingival biofilm model. Antimicrob Agents Chemother 2015;59:2791–2798.

81Zollinger L, et al: In-vitro activity of taurolidine on single species and a multispecies population associated with periodontitis. Anaerobe 2015;32:18–23.

82Sethi KS, Karde PA, Joshi CP: Comparative evaluation of sutures coated with triclosan and chlorhexidine for oral biofilm inhibition potential and antimicrobial activity against periodontal pathogens: an in vitro study. Indian J Dent Res 2016;27:535–539.

83Fernandez E, et al: Antibacterial effects of toothpastes evaluated in an in vitro biofilm model. Oral Health Prev Dent 2017;15:251–257.

84Sennhenn-Kirchner S, et al: Decontamination efficacy of erbium:yttrium-aluminium-garnet and diode laser light on oral Candida albicans isolates of a 5-day in vitro biofilm model. Lasers Med Sci 2009;24:313–320.

85Koban I, et al: Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro – proof of principle experiment. J Clin Periodontol 2011;38:956–965.

86Roberts JL, et al: An in vitro study of alginate oligomer therapies on oral biofilms. J Dent 2013:41:892–899.

87Sanchez MC, et al: An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater 2014;30:1161–1171.

88Cho K, et al: The effect of photodynamic therapy on Aggregatibacter actinomycetemcomitans attached to surface-modified titanium. J Periodontal Implant Sci 2015;45:38–45.

89Preissner S, et al: Bactericidal efficacy of tissue tolerable plasma on microrough titanium dental implants: an in-vitro-study. J Biophotonics 2016;9:637–644.

90Sousa V, et al: Experimental models for contamination of titanium surfaces and disinfection protocols. Clin Oral Implants Res 2016;27:1233–1242.

91Eick S, et al: In vitro activity of Er:YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces. PLoS One 2017;12:e0171086.

92Sanchez MC, et al: Response to antiseptic agents of periodontal pathogens in in vitro biofilms on titanium and zirconium surfaces. Dent Mater 2017;33:446–453.

93Montelongo-Jauregui D, et al: An in vitro model for Candida albicans-Streptococcus gordonii biofilms on titanium surfaces. J Fungi 2018;4:66.

94Lamfon H, et al: Composition of in vitro denture plaque biofilms and susceptibility to antifungals. FEMS Microbiol Lett 2005;242:345–351.

95Hua J, et al: Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans. Mol Oral Microbiol 2010;25:418–425.

96Ramage G, et al: A comparative in vitro study of two denture cleaning techniques as an effective strategy for inhibiting Candida albicans biofilms on denture surfaces and reducing inflammation. J Prosthodont 2012;21:516–522.

97Montelongo-Jauregui D, et al: An in vitro model for oral mixed biofilms of Candida albicans and Streptococcus gordonii in synthetic saliva. Front Microbiol 2016;7: 686.

98Seleem D, et al: In vitro and in vivo antifungal activity of Lichochalcone-A against Candida albicans biofilms. PLoS One 2016;11:e0157188.

99da Silva NR, et al: Preclinical study of a cost-effective photodynamic therapy protocol for treating oral candidoses. Lasers Med Sci 2017;32:1253–1260.

Sigrun Eick

University of Bern

Department of Periodontology

Freiburgstrasse 7

CH–3010 Bern (Switzerland)

sigrun.eick@zmk.unibe.ch

Oral Biofilms

Подняться наверх