Читать книгу Spectrums of Amyotrophic Lateral Sclerosis - Группа авторов - Страница 25

REFERENCES

Оглавление

1 1. Rowland, L.P. and Shneider, N.A. (2001). Amyotrophic lateral sclerosis. N Engl J Med 344 (22): 1688–1700.

2 2. Neumann, M., Sampathu, D.M., Kwong, L.K. et al. (2006). Ubiquitinated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314 (5796): 130–133.

3 3. Byrne, S., Bede, P., Elamin, M. et al. (2011). Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12 (3): 157–159.

4 4. Saberi, S., Stauffer, J.E., Schulte, D.J., and Ravits, J. (2015). Neuropathology of amyotrophic lateral sclerosis and its variants. Neurol Clin 33 (4): 855–876.

5 5. Lattante, S., Conte, A., Zollino, M. et al. (2012). Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 79 (1): 66–72.

6 6. Renton, A.E., Chiò, A., and Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17 (1): 17–23.

7 7. Longinetti, E. and Fang, F. (2019). Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32 (5): 771–776.

8 8. Sabatelli, M., Madia, F., Conte, A. et al. (2008). Natural history of young‐adult amyotrophic lateral sclerosis. Neurology 71 (12): 876–881.

9 9. Sabatelli, M., Zollino, M., Luigetti, M. et al. (2011). Uncovering amyotrophic lateral sclerosis phenotypes: clinical features and long‐term follow‐up of upper motor neuron‐dominant ALS. Amyotroph Lateral Scler 12 (4): 278–282.

10 10. Swinnen, B. and Robberecht, W. (2014). The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 10 (11): 661–670.

11 11. Cappellari, A., Ciammola, A., and Silani, V. (2008). The pseudopolyneuritic form of amyotrophic lateral sclerosis (Patrikios' disease). Electromyogr Clin Neurophysiol 48 (2): 75–81.

12 12. Hu, M.T., Ellis, C.M., Al‐Chalabi, A. et al. (1998). Flail arm syndrome: a distinctive variant of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 65 (6): 950–951.

13 13. Gamez, J., Cervera, C., and Codina, A. (1999). Flail arm syndrome of Vulpian‐Bernhart's form of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 67 (2): 258.

14 14. Ludolph, A., Drory, V., Hardiman, O. et al. (2015). A revision of the El Escorial criteria −2015. Amyotroph Lateral Scler Frontotemporal Degener 16 (5–6): 291–292.

15 15. Agosta, F., Al‐Chalabi, A., Filippi, M. et al. (2015). The El Escorial criteria: strengths and weaknesses. Amyotroph Lateral Scler Frontotemporal Degener 16 (1–2): 1–7.

16 16. Ratnavalli, E., Brayne, C., Dawson, K., and Hodges, J.R. (2002). The prevalence of frontotemporal dementia. Neurology 58 (11): 1615–1621.

17 17. Harvey, R.J., Skelton‐Robinson, M., and Rossor, M.N. (2003). The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry 74 (9): 1206–1209.

18 18. Mackenzie, I.R., Neumann, M., Bigio, E.H. et al. (2010). Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119 (1): 1–4.

19 19. Neumann, M., Roeber, S., Kretzschmar, H.A. et al. (2009). Abundant FUS‐immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 118 (5): 605–616.

20 20. Mackenzie, I.R., Neumann, M., Baborie, A. et al. (2011). A harmonized classification system for FTLD‐TDP pathology. Acta Neuropathol 122 (1): 111–113.

21 21. Mackenzie, I.R., Rademakers, R., and Neumann, M. (2010). TDP‐43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9 (10): 995–1007.

22 22. Burrell, J.R., Kiernan, M.C., Vucic, S., and Hodges, J.R. (2011). Motor neuron dysfunction in frontotemporal dementia. Brain 134 (Pt 9): 2582–2594.

23 23. Lomen‐Hoerth, C., Anderson, T., and Miller, B. (2002). The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59 (7): 1077–1079.

24 24. DeJesus‐Hernandez, M., Mackenzie, I.R., Boeve, B.F. et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron 72 (2): 245–256.

25 25. Renton, A.E., Majounie, E., Waite, A. et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 72 (2): 257–268.

26 26. Majounie, E., Renton, A.E., Mok, K. et al. (2012). Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross‐sectional study. Lancet Neurol 11 (4): 323–330.

27 27. van der Zee, J., Gijselinck, I., Dillen, L. et al. (2013). A pan‐European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 34 (2): 363–373.

28 28. Nguyen, H.P., Van Broeckhoven, C., and van der Zee, J. (2018). ALS genes in the genomic era and their implications for FTD. Trends Genet 34 (6): 404–423.

29 29. Johnson, J.O., Mandrioli, J., Benatar, M. et al. (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68 (5): 857–864.

30 30. Fecto, F., Yan, J., Vemula, S.P. et al. (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68 (11): 1440–1446.

31 31. Kim, H.J., Kim, N.C., Wang, Y.D. et al. (2013). Mutations in prion‐like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495 (7442): 467–473.

32 32. Johnson, J.O., Pioro, E.P., Boehringer, A. et al. (2014). Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17 (5): 664–666.

33 33. Arighi, A., Fumagalli, G.G., Jacini, F. et al. (2012). Early onset behavioral variant frontotemporal dementia due to the C9ORF72 hexanucleotide repeat expansion: psychiatric clinical presentations. J Alzheimers Dis 31 (2): 447–452.

34 34. Beck, J., Poulter, M., Hensman, D. et al. (2013). Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92 (3): 345–353.

35 35. Merner, N.D., Girard, S.L., Catoire, H. et al. (2012). Exome sequencing identifies FUS mutations as a cause of essential tremor. Am J Hum Genet 91 (2): 313–319.

36 36. Thiel, C., Kessler, K., Giessl, A. et al. (2011). NEK1 mutations cause short‐rib polydactyly syndrome type majewski. Am J Hum Genet 88 (1): 106–114.

37 37. Herman, M., Ciancanelli, M., Ou, Y.H. et al. (2012). Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med 209 (9): 1567–1582.

38 38. Gonzalez, M.A., Feely, S.M., Speziani, F. et al. (2014). A novel mutation in VCP causes charcot‐marie‐tooth type 2 disease. Brain 137 (Pt 11): 2897–2902.

39 39. Haack, T.B., Ignatius, E., Calvo‐Garrido, J. et al. (2016). Absence of the autophagy adaptor SQSTM1/p62 causes childhood‐onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am J Hum Genet 99 (3): 735–743.

40 40. Rezaie, T., Child, A., Hitchings, R. et al. (2002). Adult‐onset primary open‐angle glaucoma caused by mutations in optineurin. Science 295 (5557): 1077–1079.

41 41. Reid, E., Kloos, M., Ashley‐Koch, A. et al. (2002). A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 71 (5): 1189–1194.

42 42. Crimella, C., Baschirotto, C., Arnoldi, A. et al. (2012). Mutations in the motor and stalk domains of KIF5A in spastic paraplegia type 10 and in axonal charcot‐marie‐tooth type 2. Clin Genet 82 (2): 157–164.

43 43. Duis, J., Dean, S., Applegate, C. et al. (2016). KIF5A mutations cause an infantile onset phenotype including severe myoclonus with evidence of mitochondrial dysfunction. Ann Neurol 80 (4): 633–637.

44 44. Rosen, D.R., Siddique, T., Patterson, D. et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362 (6415): 59–62.

45 45. Xi, Z., Zinman, L., Grinberg, Y. et al. (2012). Investigation of c9orf72 in 4 neurodegenerative disorders. Arch Neurol 69 (12): 1583–1590.

46 46. Rubino, E., Di Stefano, M., Galimberti, D. et al. (2020). C9ORF72 hexanucleotide repeat expansion frequency in patients with Paget's disease of bone. Neurobiol Aging 85: 154.e1–154.e3.

47 47. Kabashi, E., Valdmanis, P.N., Dion, P. et al. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40 (5): 572–574.

48 48. Sreedharan, J., Blair, I.P., Tripathi, V.B. et al. (2008). TDP‐43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319 (5870): 1668–1672.

49 49. Kovacs, G.G., Murrell, J.R., Horvath, S. et al. (2009). TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 24 (12): 1843–1847. https://doi.org/10.1002/mds.22697.

50 50. Quadri, M., Cossu, G., Saddi, V. et al. (2011). Broadening the phenotype of TARDBP mutations: the TARDBP Ala382Thr mutation and Parkinson's disease in Sardinia. Neurogenetics 12 (3): 203–209.

51 51. Kwiatkowski, T.J. Jr., Bosco, D.A., Leclerc, A.L. et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323 (5918): 1205–1208.

52 52. Vance, C., Rogelj, B., Hortobágyi, T. et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323 (5918): 1208–1211.

53 53. Yan, J., Deng, H.X., Siddique, N. et al. (2010). Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 75 (9): 807–814.

54 54. Kenna, K.P., van Doormaal, P.T., Dekker, A.M. et al. (2016). NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat Genet 48 (9): 1037–1042.

55 55. Cirulli, E.T., Lasseigne, B.N., Petrovski, S. et al. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347 (6229): 1436–1441.

56 56. Freischmidt, A., Wieland, T., Richter, B. et al. (2015). Haploinsufficiency of TBK1 causes familial ALS and fronto‐temporal dementia. Nat Neurosci 18 (5): 631–636.

57 57. Senderek, J., Garvey, S.M., Krieger, M. et al. (2009). Autosomal‐dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am J Hum Genet 84 (4): 511–518.

58 58. Watts, G.D., Wymer, J., Kovach, M.J. et al. (2004). Inclusion body myopathy associated with paget disease of bone and frontotemporal dementia is caused by mutant valosin‐containing protein. Nat Genet 36 (4): 377–381.

59 59. Rubino, E., Rainero, I., Chiò, A. et al. (2012). SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79 (15): 1556–1562.

60 60. Bucelli, R.C., Arhzaouy, K., Pestronk, A. et al. (2015). SQSTM1 splice site mutation in distal myopathy with rimmed vacuoles. Neurology 85 (8): 665–674.

61 61. Laurin, N., Brown, J.P., Morissette, J., and Raymond, V. (2002). Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p 62) in paget disease of bone. Am J Hum Genet 70 (6): 1582–1588.

62 62. Maruyama, H., Morino, H., Ito, H. et al. (2010). Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465 (7295): 223–226.

63 63. Pottier, C., Bieniek, K.F., Finch, N. et al. (2015). Whole‐genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130 (1): 77–92.

64 64. Ayaki, T., Ito, H., Komure, O. et al. (2018). Multiple proteinopathies in familial ALS cases with optineurin mutations. J Neuropathol Exp Neurol 77 (2): 128–138.

65 65. Albagha, O.M., Visconti, M.R., Alonso, N. et al. (2010). Genome‐wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for paget's disease of bone. Nat Genet 42 (6): 520–524.

66 66. Nicolas, A., Kenna, K.P., Renton, A.E. et al. (2018). Genome‐wide analyses identify KIF5A as a novel ALS gene. Neuron 97 (6): 1268–1283.e6.

67 67. van der Zee, J., Pirici, D., Van Langenhove, T. et al. (2009). Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His. Neurology 73 (8): 626–632.

68 68. van Blitterswijk, M., van Es, M.A., Hennekam, E.A. et al. (2012). Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21 (17): 3776–3784.

69 69. van Blitterswijk, M., Baker, M.C., DeJesus‐Hernandez, M. et al. (2013). C9ORF72 repeat expansions in cases with previously identified pathogenic mutations. Neurology 81 (15): 1332–1341.

70 70. Giannoccaro, M.P., Bartoletti‐Stella, A., Piras, S. et al. (2017). Multiple variants in families with amyotrophic lateral sclerosis and frontotemporal dementia related to C9orf72 repeat expansion: further observations on their oligogenic nature. J Neurol 264 (7): 1426–1433.

71 71. Restagno, G., Lombardo, F., Sbaiz, L. et al. (2008). The rare G93D mutation causes a slowly progressing lower motor neuron disease. Amyotroph Lateral Scler 9 (1): 35–39.

72 72. Luigetti, M., Conte, A., Madia, F. et al. (2009). Heterozygous SOD1 D90A mutation presenting as slowly progressive predominant upper motor neuron amyotrophic lateral sclerosis. Neurol Sci 30 (6): 517–520.

73 73. Georgoulopoulou, E., Gellera, C., Bragato, C. et al. (2010). A novel SOD1 mutation in a young amyotrophic lateral sclerosis patient with a very slowly progressive clinical course. Muscle Nerve 42 (4): 596–597.

74 74. Del Grande, A., Conte, A., Lattante, S. et al. (2011). D11Y SOD1 mutation and benign ALS: a consistent genotype‐phenotype correlation. J Neurol Sci 309 (1–2): 31–33.

75 75. Juneja, T., Pericak‐Vance, M.A., Laing, N.G. et al. (1997). Prognosis in familial amyotrophic lateral sclerosis: progression and survival in patients with glu100gly and ala4val mutations in Cu, Zn superoxide dismutase. Neurology 48 (1): 55–75.

76 76. Takazawa, T., Ikeda, K., Hirayama, T. et al. (2010). Familial amyotrophic lateral sclerosis with a novel G85S mutation of superoxide dismutase 1 gene: clinical features of lower motor neuron disease. Intern Med 49 (2): 183–186.

77 77. Conte, A., Lattante, S., Zollino, M. et al. (2012). P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis. Neuromuscul Disord 22 (1): 73–75.

78 78. Hübers, A., Just, W., Rosenbohm, A. et al. (2015). De novo FUS mutations are the most frequent genetic cause in early‐onset German ALS patients. Neurobiol Aging 36 (11): 3117.

79 79. Leblond, C.S., Webber, A., Gan‐Or, Z. et al. (2016). De novo FUS P525L mutation in Juvenile amyotrophic lateral sclerosis with dysphonia and diplopia. Neurol Genet 2 (2): e63.

80 80. Oskarsson, B., Gendron, T.F., and Staff, N.P. (2018). Amyotrophic lateral sclerosis: an update for 2018. Mayo Clin Proc 93 (11): 1617–1628.

81 81. Kabashi, E., Champagne, N., Brustein, E., and Drapeau, P. (2010). In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet 26 (8): 373–381.

82 82. Babin, P.J., Goizet, C., and Raldúa, D. (2014). Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 118: 36–58.

83 83. De Giorgio, F., Maduro, C., Fisher, E.M.C., and Acevedo‐Arozena, A. (2019). Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Dis Model Mech 12 (1).

84 84. Gurney, M.E., Pu, H., Chiu, A.Y. et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264 (5166): 1772–1775.

85 85. Crociara, P., Chieppa, M.N., Vallino Costassa, E. et al. (2019). Motor neuron degeneration, severe myopathy and TDP‐43 increase in a transgenic pig model of SOD1‐linked familiar ALS. Neurobiol Dis 124: 263–275.

86 86. Benatar, M. (2007). Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 26 (1): 1–13.

87 87. Sullivan, P.M., Zhou, X., Robins, A.M. et al. (2016). The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy‐lysosome pathway. Acta Neuropathol Commun 4 (1): 51.

88 88. Chew, J., Gendron, T.F., Prudencio, M. et al. (2015). Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP‐43 pathology, neuronal loss, and behavioral deficits. Science 348 (6239): 1151–1154.

89 89. Liu, Y., Pattamatta, A., Zu, T. et al. (2016). C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90 (3): 521–534.

90 90. Cook, C. and Petrucelli, L. (2019). Genetic convergence brings clarity to the enigmatic red line in ALS. Neuron 101 (6): 1057–1069.

91 91. Zhang, X., Yamashita, S., Hara, K. et al. (2019). Mutant MATR3 mouse model to explain multisystem proteinopathy. J Pathol 249 (2): 182–192.

92 92. Duan, W., Guo, M., Yi, L. et al. (2019). Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD‐ALS in mice. Aging (Albany NY) 11 (8): 2457–2476.

93 93. Takahashi, K., Tanabe, K., Ohnuki, M. et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (5): 861–872.

94 94. Son, E.Y., Ichida, J.K., Wainger, B.J. et al. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9 (3): 205–218.

Spectrums of Amyotrophic Lateral Sclerosis

Подняться наверх