Читать книгу The Esophagus - Группа авторов - Страница 149

References

Оглавление

1 1 Ertekin C, Kiylioglu N, Tarlaci S, et al. Voluntary and reflex influences on the initiation of swallowing reflex in man. Dysphagia 2001; 16:40–7.

2 2 Bautista TG, Sun QJ, Pilowsky PM. The generation of pharyngeal phase of swallow and its coordination with breathing: interaction between the swallow and respiratory central pattern generators. Prog Brain Res 2014; 212:253–75.

3 3 Lear CS, Flanagan JB, Jr., Moorrees CF. The frequency of deglutition in man. Arch Oral Biol 1965; 10:83–100.

4 4 Bianchi AL, Gestreau C. The brainstem respiratory network: an overview of a half century of research. Respir Physiol Neurobiol 2009; 168:4–12.

5 5 Lang IM. Brain stem control of the phases of swallowing. Dysphagia 2009; 24:333–48.

6 6 Lang IM, Dean C, Medda BK, et al. Differential activation of medullary vagal nuclei during different phases of swallowing in the cat. Brain Res 2004; 1014:145–63.

7 7 Jean A. Electrophysiologic characterization of the swallowing pattern generator in the brainstem. Part 1: Oral cavity, pharynx and esophagus. GI Motility online. 2006.

8 8 Doty R. Neural organization of deglutition. In: Code CF, ed. Handbook of physiology sect. 6, vol. 4, Washington, D.C.: American Physiological Society; 1968. p 1861–1902.

9 9 Yoshida Y, Tanaka Y, Hirano M, et al. Sensory innervation of the pharynx and larynx. Am J Med 2000; 108 Suppl 4a:51S–61S.

10 10 Beyak MJ, Collman PI, Valdez DT, et al. Superior laryngeal nerve stimulation in the cat: effect on oropharyngeal swallowing, oesophageal motility and lower oesophageal sphincter activity. Neurogastroenterol Motil 1997; 9:117–27.

11 11 Ciampini G, Jean A. Role of glossopharyngeal and trigeminal afferents in the initiation and propagation of swallowing. II – Trigeminal afferents (author's transl). J Physiol (Paris) 1980; 76:61–6.

12 12 Ciampini G, Jean A. Role of glossopharyngeal and trigeminal afferents in the initiation and propagation of swallowing. I – Glossopharyngeal afferents (author's transl). J Physiol (Paris) 1980; 76:49–60.

13 13 Shaker R, Ren J, Zamir Z, et al. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology 1994; 107:396–402.

14 14 Lang IM, Medda BK, Ren J, et al. Characterization and mechanisms of the pharyngoesophageal inhibitory reflex. Am J Physiol 1998; 275:G1127–36.

15 15 Mansson I, Sandberg N. Oro‐pharyngeal sensitivity and elicitation of swallowing in man. Acta Otolaryngol 1975; 79:140–5.

16 16 Randich A, Gebhart GF. Vagal afferent modulation of nociception. Brain Res Brain Res Rev 1992; 17:77–99.

17 17 Shaker R. Reflex interaction of pharynx, esophagus, and airways. Part 1: Oral cavity, pharynx and esophagus. GI Motility Online. 2006.

18 18 Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med 2000; 108 Suppl 4a:79S–86S.

19 19 Chiang CY, Hu JW, Dostrovsky JO, et al. Changes in mechanoreceptive field properties of trigeminal somatosensory brainstem neurons induced by stimulation of nucleus raphe magnus in cats. Brain Res 1989; 485:371–81.

20 20 Sengupta JN, Saha JK, Goyal RK. Stimulus‐response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J Neurophysiol 1990; 64:796–812.

21 21 Collman PI, Tremblay L, Diamant NE. The distribution of spinal and vagal sensory neurons that innervate the esophagus of the cat. Gastroenterology 1992; 103:817–22.

22 22 Jean A. The nucleus tractus solitarius: neuroanatomic, neurochemical and functional aspects. Arch Int Physiol Biochim Biophys 1991; 99:A3–52.

23 23 Amirali A, Tsai G, Schrader N, et al. Mapping of brain stem neuronal circuitry active during swallowing. Ann Otol Rhinol Laryngol 2001; 110:502–13.

24 24 Altschuler SM, Bao X, Miselis RR. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat. J Comp Neurol 1994; 342:538–50.

25 25 Barrett RT, Bao X, Miselis RR, et al. Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology 1994; 107:728–37.

26 26 Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 2001; 81:929–69.

27 27 Altschuler SM, Bao XM, Miselis RR. Dendritic architecture of nucleus ambiguus motoneurons projecting to the upper alimentary tract in the rat. J Comp Neurol 1991; 309:402–14.

28 28 Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 1987; 262:546–62.

29 29 Lawn AM. The nucleus ambiguus of the rabbit. J Comp Neurol 1966; 127:307–20.

30 30 Hyland NP, Abrahams TP, Fuchs K, et al. Organization and neurochemistry of vagal preganglionic neurons innervating the lower esophageal sphincter in ferrets. J Comp Neurol 2001; 430:222–34.

31 31 Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 1980; 193:467–508.

32 32 Collman PI, Tremblay L, Diamant NE. The central vagal efferent supply to the esophagus and lower esophageal sphincter of the cat. Gastroenterology 1993; 104:1430–8.

33 33 Hornby PJ, Abrahams TP. Central control of lower esophageal sphincter relaxation. Am J Med 2000; 108 Suppl 4a:90S–98S.

34 34 Rossiter CD, Norman WP, Jain M, et al. Control of lower esophageal sphincter pressure by two sites in dorsal motor nucleus of the vagus. Am J Physiol 1990; 259:G899–906.

35 35 Bieger D NW. Neural circuits and mediators regulating swallowing in the brainstem. GI Motility Online. 2006.

36 36 Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol 2008; 42:610–9.

37 37 Umezaki T, Matsuse T, Shin T. Medullary swallowing‐related neurons in the anesthetized cat. Neuroreport 1998; 9:1793–8.

38 38 Kalia M. Cerebral pathways in reflex muscular inhibition from type J pulmonary receptors. J Physiol 1969; 204:92P–93P.

39 39 Roman C, Tieffenbach L. Recording the unit activity of vagal motor fibers innervating the baboon esophagus. J Physiol (Paris) 1972; 64:479–506.

40 40 Roman C. Nervous control of esophageal peristalsis. J Physiol (Paris) 1966; 58:79–108.

41 41 Jean A. Localization and activity of medullary swallowing neurones. J Physiol (Paris) 1972; 64:227–68.

42 42 Zoungrana OR, Amri M, Car A, et al. Intracellular activity of motoneurons of the rostral nucleus ambiguus during swallowing in sheep. J Neurophysiol 1997; 77:909–22.

43 43 Beyak MJ, Collman PI, Xue S, et al. Release of nitric oxide in the central nervous system mediates tonic and phasic contraction of the cat lower oesophageal sphincter. Neurogastroenterol Motil 2003; 15:401–7.

44 44 Beyak MJ, Xue S, Collman PI, et al. Central nervous system nitric oxide induces oropharyngeal swallowing and esophageal peristalsis in the cat. Gastroenterology 2000; 119:377–85.

45 45 Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia 1993; 8:195–202.

46 46 Broussard DL, Altschuler SM. Central integration of swallow and airway‐protective reflexes. Am J Med 2000; 108 Suppl 4a:62S–67S.

47 47 Martin RE, Kemppainen P, Masuda Y, et al. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol 1999; 82:1529–41.

48 48 Hamdy S, Aziz Q, Rothwell JC, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology 1998; 115:1104–12.

49 49 Hamdy S, Aziz Q, Rothwell JC, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med 1996; 2:1217–24.

50 50 Hamdy S, Xue S, Valdez D, et al. Induction of cortical swallowing activity by transcranial magnetic stimulation in the anaesthetized cat. Neurogastroenterol Motil 2001; 13:65–72.

51 51 Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 2004; 92:2428–43.

52 52 Sumi T. The activity of brainstem respiratory neurons and spinal respiratory motorneurons during swallowing. J Neurophysiol 1963; 26:466–477.

53 53 Gestreau C, Milano S, Bianchi AL, et al. Activity of dorsal respiratory group inspiratory neurons during laryngeal‐induced fictive coughing and swallowing in decerebrate cats. Exp Brain Res 1996; 108:247–56.

54 54 Martin‐Harris B. Coordination of respiration and swallowing. Part 1: Oral cavity, pharynx and esophagus GI Motility Online 2006.

55 55 Hamdy S. Role of cerebral cortex in the control of swallowing. Part 1: Oral cavity, pharynx, and esophagus. GI Motility Online 2006.

56 56 Silva AC, Fabio SR, Dantas RO. A scintigraphic study of oral, pharyngeal, and esophageal transit in patients with stroke. Dysphagia 2008; 23:165–71.

57 57 Hamdy S, Rothwell JC, Aziz Q, et al. Long‐term reorganization of human motor cortex driven by short‐term sensory stimulation. Nat Neurosci 1998; 1:64–8.

58 58 Donner MW, Bosma JF, Robertson DL. Anatomy and physiology of the pharynx. Gastrointest Radiol 1985; 10:196–212.

59 59 Pouderoux P, Kahrilas PJ. The pharyngoesophageal segment: Normal structure and function. Dis Esophagus 1985; 8:233–241.

60 60 Saitoh E, Shibata S, Matsuo K, et al. Chewing and food consistency: effects on bolus transport and swallow initiation. Dysphagia 2007; 22:100–7.

61 61 Yoneda M, Saitoh K. Modification of masticatory rhythmicity leading to the initiation of the swallowing reflex in humans. Dysphagia 2018; 33:358–368.

62 62 Preiksaitis HG, Mayrand S, Robins K, et al. Coordination of respiration and swallowing: effect of bolus volume in normal adults. Am J Physiol 1992; 263:R624–30.

63 63 Alberts MJ, Horner J, Gray L, et al. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia 1992; 7:170–3.

64 64 Daniels SK. Neurological disorders affecting oral, pharyngeal swallowing. Part 1: Oral cavity, pharynx and esophagus. GI Motility Online 2006.

65 65 Jaradeh S. Muscle disorders affecting oral and pharyngel swallowing. Part 1: Oral cavity, pharynx and esophagus. GI Motility Online 2006.

66 66 B. J. Radiographic evaluation of motility of mouth and pharynx. Part 1: Oral cavity, pharynx and esophagus. GI Motility Online 2006.

67 67 Ergun GA, Kahrilas PJ, Lin S, et al. Shape, volume, and content of the deglutitive pharyngeal chamber imaged by ultrafast computerized tomography. Gastroenterology 1993; 105:1396–403.

68 68 Gaige TA, Benner T, Wang R, et al. Three dimensional myoarchitecture of the human tongue determined in vivo by diffusion tensor imaging with tractography. J Magn Reson Imaging 2007; 26:654–61.

69 69 Jones B, Donner M, eds. Normal and abnormal swallowing. imaging in diagnosis and therapy. New York: Springer‐Verlag; 1990.

70 70 Wein B, Bockler R, Klajman S. Temporal reconstruction of sonographic imaging of disturbed tongue movements. Dysphagia 1991; 6:135–9.

71 71 Kahrilas PJ, Logemann JA, Lin S, et al. Pharyngeal clearance during swallowing: a combined manometric and videofluoroscopic study. Gastroenterology 1992; 103:128–36.

72 72 Castell JA, Dalton CB, Castell DO. Effects of body position and bolus consistency on the manometric parameters and coordination of the upper esophageal sphincter and pharynx. Dysphagia 1990; 5:179–86.

73 73 Sears VW, Jr., Castell JA, Castell DO. Radial and longitudinal asymmetry of human pharyngeal pressures during swallowing. Gastroenterology 1991; 101:1559–63.

74 74 Kahrilas PJ, Lin S, Logemann JA, et al. Deglutitive tongue action: volume accommodation and bolus propulsion. Gastroenterology 1993; 104:152–62.

75 75 Kahrilas PJ, Lin S, Chen J, et al. Oropharyngeal accommodation to swallow volume. Gastroenterology 1996; 111:297–306.

76 76 Dua KS, Ren J, Bardan E, et al. Coordination of deglutitive glottal function and pharyngeal bolus transit during normal eating. Gastroenterology 1997; 112:73–83.

77 77 Jacob P, Kahrilas PJ, Logemann JA, et al. Upper esophageal sphincter opening and modulation during swallowing. Gastroenterology 1989; 97:1469–78.

78 78 Kahrilas PJ, Dodds WJ, Dent J, et al. Upper esophageal sphincter function during belching. Gastroenterology 1986; 91:133–40.

79 79 Welch RW, Luckmann K, Ricks PM, et al. Manometry of the normal upper esophageal sphincter and its alterations in laryngectomy. J Clin Invest 1979; 63:1036–41.

80 80 Liebermann Meffert D. The pharyngoesophageal segment: Anatomy and innervation. Dis Esophagus 1985; 8:242–251.

81 81 Lang IM, Shaker R. Anatomy and physiology of the upper esophageal sphincter. Am J Med 1997; 103:50S–55S.

82 82 Bonington A, Mahon M, Whitmore I. A histological and histochemical study of the cricopharyngeus muscle in man. J Anat 1988; 156:27–37.

83 83 Kristmundsdottir F, Mahon M, Froes MM, et al. Histomorphometric and histopathological study of the human cricopharyngeus muscle: in health and in motor neuron disease. Neuropathol Appl Neurobiol 1990; 16:461–75.

84 84 Mu L, Sanders I. The innervation of the human upper esophageal sphincter. Dysphagia 1996; 11:234–8.

85 85 Sundman E, Yost CS, Margolin G, et al. Acetylcholine receptor density in human cricopharyngeal muscle and pharyngeal constrictor muscle. Acta Anaesthesiol Scand 2002; 46:999–1002.

86 86 Bao X, Wiedner EB, Altschuler SM. Transsynaptic localization of pharyngeal premotor neurons in rat. Brain Res 1995; 696:246–9.

87 87 Asoh R, Goyal RK. Manometry and electromyography of the upper esophageal sphincter in the opossum. Gastroenterology 1978; 74:514–20.

88 88 Castell JA, Castell DO, Schultz AR, et al. Effect of head position on the dynamics of the upper esophageal sphincter and pharynx. Dysphagia 1993; 8:1–6.

89 89 Wilson JA, Pryde A, Cecilia A, et al. Normal pharyngoesophageal motility. A study of 50 healthy subjects. Dig Dis Sci 1989; 34:1590–9.

90 90 Pandolfino JE, Kahrilas PJ, American Gastroenterological A. AGA technical review on the clinical use of esophageal manometry. Gastroenterology 2005; 128:209–24.

91 91 Kahrilas PJ, Dodds WJ, Dent J, et al. Upper esophageal sphincter function during deglutition. Gastroenterology 1988; 95:52–62.

92 92 Jacob P, Kahrilas PJ, Herzon G, et al. Determinants of upper esophageal sphincter pressure in dogs. Am J Physiol 1990; 259:G245–51.

93 93 Isberg A, Nilsson ME, Schiratzki H. Movement of the upper esophageal sphincter and a manometric device during deglutition. A cineradiographic investigation. Acta Radiol Diagn (Stockh) 1985; 26:381–8.

94 94 Lydon SB, Dodds WJ, Hogan WJ, et al. The effect of manometric assembly diameter on intraluminal esophageal pressure recording. Am J Dig Dis 1975; 20:968–70.

95 95 Cardoso PFG, Miller L, Diamant NE. The effect of catheter diameter on upper esophageal sphincter pressure measurement in normal subjects. Gullet 1992; 2:145–148.

96 96 Kahrilas PJ, Dodds WJ, Dent J, et al. Effect of sleep, spontaneous gastroesophageal reflux, and a meal on upper esophageal sphincter pressure in normal human volunteers. Gastroenterology 1987; 92:466–71.

97 97 Vanner RG, Pryle BJ, O'Dwyer JP, et al. Upper oesophageal sphincter pressure and the intravenous induction of anaesthesia. Anaesthesia 1992; 47:371–5.

98 98 Vanner RG, Pryle BJ, O'Dwyer JP, et al. Upper oesophageal sphincter pressure during inhalational anaesthesia. Anaesthesia 1992; 47:950–4.

99 99 Goyal RK, Sangree MH, Hersh T, et al. Pressure inversion point at the upper high pressure zone and its genesis. Gastroenterology 1970; 59:754–9.

100 100 Lang IM, Dantas RO, Cook IJ, et al. Videoradiographic, manometric, and electromyographic analysis of canine upper esophageal sphincter. Am J Physiol 1991; 260:G911–9.

101 101 Preiksaitis HG, Diamant N. The physiology of swallowing: Pharyngeal and cricopharyngeal mechanisms. In: Pearson FG, Deslauriers J, Ginsberg RJ, Hiebert CA, McKneally MF, Urschel HC, eds. Esophageal surgery. New York: Churchill Livingstone; 1995.

102 102 Cook IJ, Dent J, Shannon S, et al. Measurement of upper esophageal sphincter pressure. Effect of acute emotional stress. Gastroenterology 1987; 93:526–32.

103 103 Cook IJ, Dent J, Collins SM. Upper esophageal sphincter tone and reactivity to stress in patients with a history of globus sensation. Dig Dis Sci 1989; 34:672–6.

104 104 Lang IM, Medda BK, Shaker R. Mechanisms of reflexes induced by esophageal distension. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1246–63.

105 105 Ghosh SK, Pandolfino JE, Zhang Q, et al. Deglutitive upper esophageal sphincter relaxation: a study of 75 volunteer subjects using solid‐state high‐resolution manometry. Am J Physiol Gastrointest Liver Physiol 2006; 291:G525–31.

106 106 Cook IJ, Dodds WJ, Dantas RO, et al. Opening mechanisms of the human upper esophageal sphincter. Am J Physiol 1989; 257:G748–59.

107 107 Kahrilas PJ, Logemann JA, Krugler C, et al. Volitional augmentation of upper esophageal sphincter opening during swallowing. Am J Physiol 1991; 260:G450–6.

108 108 Goyal RK, Martin SB, Shapiro J, et al. The role of cricopharyngeus muscle in pharyngoesophageal disorders. Dysphagia 1993; 8:252–8.

109 109 Martino R, Terrault N, Ezerzer F, et al. Dysphagia in a patient with lateral medullary syndrome: insight into the central control of swallowing. Gastroenterology 2001; 121:420–6.

110 110 Sacco RL, Freddo L, Bello JA, et al. Wallenberg's lateral medullary syndrome. Clinical‐magnetic resonance imaging correlations. Arch Neurol 1993; 50:609–14.

111 111 Kahrilas PJ, Lin S, Rademaker AW, et al. Impaired deglutitive airway protection: a videofluoroscopic analysis of severity and mechanism. Gastroenterology 1997; 113:1457–64.

112 112 Freiman JM, El‐Sharkawy TY, Diamant NE. Effect of bilateral vagosympathetic nerve blockade on response of the dog upper esophageal sphincter (UES) to intraesophageal distention and acid. Gastroenterology 1981; 81:78–84.

113 113 Kahrilas PJ, Dodds WJ, Hogan WJ. Dysfunction of the belch reflex. A cause of incapacitating chest pain. Gastroenterology 1987; 93:818–22.

114 114 Gerhardt DC, Shuck TJ, Bordeaux RA, et al. Human upper esophageal sphincter. Response to volume, osmotic, and acid stimuli. Gastroenterology 1978; 75:268–74.

115 115 Barbara L, Lazzari R, Roda A, et al. Serum bile acids in newborns and children. Pediatr Res 1980; 14:1222–5.

116 116 Shaker R, Ren J, Kern M, et al. Mechanisms of airway protection and upper esophageal sphincter opening during belching. Am J Physiol 1992; 262:G621–8.

117 117 Shaker R, Dodds WJ, Ren J, et al. Esophagoglottal closure reflex: a mechanism of airway protection. Gastroenterology 1992; 102:857–61.

118 118 Wallin L, Boesby S, Madsen T. The effect of HCl infusion in the lower part of the oesophagus on the pharyngo‐oesophageal sphincter pressure in normal subjects. Scand J Gastroenterol 1978; 13:821–6.

119 119 Thompson DG, Andreollo NA, McIntyre AS, et al. Studies of the oesophageal clearance responses to intraluminal acid. Gut 1988; 29:881–5.

120 120 Vakil NB, Kahrilas PJ, Dodds WJ, et al. Absence of an upper esophageal sphincter response to acid reflux. Am J Gastroenterol 1989; 84:606–10.

121 121 Li Q, Castell JA, Castell DO. Manometric determination of esophageal length. Am J Gastroenterol 1994; 89:722–5.

122 122 Meyer GW, Austin RM, Brady CE, 3rd, et al. Muscle anatomy of the human esophagus. J Clin Gastroenterol 1986; 8:131–4.

123 123 Christensen, J. The oesophagus. In: A guide to gastrointestinal motility. John Wright; 1983. p. 75–100.

124 124 Chang HY, Mashimo H, Goyal RK. Musings on the wanderer: what's new in our understanding of vago‐vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 2003; 284:G357–66.

125 125 Sifrim D, Janssens J, Vantrappen G. A wave of inhibition precedes primary peristaltic contractions in the human esophagus. Gastroenterology 1992; 103:876–82.

126 126 Sifrim D, Janssens J, Vantrappen G. Failing deglutitive inhibition in primary esophageal motility disorders. Gastroenterology 1994; 106:875–82.

127 127 Baumgarten HG, Lange W. Adrenergic innervation of the oesophagus in the cat (Felis domestica) and Rhesus monkey (Macacus rhesus). Z Zellforsch Mikrosk Anat 1969; 95:529–45.

128 128 Liebermann‐Meffert D, Allgower M, Schmid P, et al. Muscular equivalent of the lower esophageal sphincter. Gastroenterology 1979; 76:31–8.

129 129 Sengupta JN, Kauvar D, Goyal RK. Characteristics of vagal esophageal tension‐sensitive afferent fibers in the opossum. J Neurophysiol 1989; 61:1001–10.

130 130 Rodrigo J, Hernandez J, Vidal MA, et al. Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat (Basel) 1975; 92:79–100.

131 131 Huizinga JD, Reed DE, Berezin I, et al. Survival dependency of intramuscular ICC on vagal afferent nerves in the cat esophagus. Am J Physiol Regul Integr Comp Physiol 2008; 294:R302–10.

132 132 Phillips RJ, Powley TL. Tension and stretch receptors in gastrointestinal smooth muscle: re‐evaluating vagal mechanoreceptor electrophysiology. Brain Res Brain Res Rev 2000; 34:1–26.

133 133 Powley TL, Wang XY, Fox EA, et al. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 2008; 20:69–79.

134 134 Zagorodnyuk VP, Brookes SJ. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 2000; 20:6249–55.

135 135 Christensen J, Rick GA, Soll DJ. Intramural nerves and interstitial cells revealed by the Champy‐Maillet stain in the opossum esophagus. J Auton Nerv Syst 1987; 19:137–51.

136 136 Daniel EE, Posey‐Daniel V. Neuromuscular structures in opossum esophagus: role of interstitial cells of Cajal. Am J Physiol 1984; 246:G305–15.

137 137 Burns AJ, Lomax AE, Torihashi S, et al. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci 1996; 93:12008–13.

138 138 Woodland P, Aktar R, Mthunzi E, et al. Distinct afferent innervation patterns within the human proximal and distal esophageal mucosa. Am J Physiol Gastrointest Liver Physiol 2015; 308:G525–31.

139 139 Woodland P, Shen Ooi JL, Grassi F, et al. Superficial esophageal mucosal afferent nerves may contribute to reflux hypersensitivity in nonerosive reflux disease. Gastroenterology 2017; 153:1230–1239.

140 140 Zhou DS, Desaki J, Komuro T. Neuro‐muscular junctions of longitudinal and circular muscle fibers of the guinea‐pig esophagus and their relation to myenteric plexus. J Auton Nerv Syst 1996; 58:63–8.

141 141 Toyama T, Yokoyama I, Nishi K. Effects of hexamethonium and other ganglionic blocking agents on electrical activity of the esophagus induced by vagal stimulation in the dog. Eur J Pharmacol 1975; 31:63–71.

142 142 Neuhuber WL, Worl J, Berthoud HR, et al. NADPH‐diaphorase‐positive nerve fibers associated with motor endplates in the rat esophagus: new evidence for co‐innervation of striated muscle by enteric neurons. Cell Tissue Res 1994; 276:23–30.

143 143 Singaram C, Sengupta A, Sweet MA, et al. Nitrinergic and peptidergic innervation of the human oesophagus. Gut 1994; 35:1690–6.

144 144 Sang Q, Young HM. Development of nicotinic receptor clusters and innervation accompanying the change in muscle phenotype in the mouse esophagus. J Comp Neurol 1997; 386:119–36.

145 145 Boudaka A, Worl J, Shiina T, et al. Galanin modulates vagally induced contractions in the mouse oesophagus. Neurogastroenterol Motil 2009; 21:180–8.

146 146 Kallmunzer B, Sorensen B, Neuhuber WL, et al. Enteric co‐innervation of striated muscle fibres in human oesophagus. Neurogastroenterol Motil 2008; 20:597–610.

147 147 Baldi F, Ferrarini F, Longanesi A, et al. Acid gastroesophageal reflux and symptom occurrence. Analysis of some factors influencing their association. Dig Dis Sci 1989; 34:1890–3.

148 148 Roman C, Gonella J. Extrinsic control of digestive tract motility. In: Johnson LR, ed. Physiology of the gastrointestinal tract. Raven Press; 1981. p. 289–333.

149 149 Shiina T, Shima T, Worl J, et al. The neural regulation of the mammalian esophageal motility and its implication for esophageal diseases. Pathophysiology 2010; 17:129–33.

150 150 Soffer EE, Schneiderman J, Schwartz I, et al. Effects of upper dorsal sympathectomy on esophageal motility in humans. Dig Dis Sci 1988; 33:157–60.

151 151 Zfass AM, Prince R, Allen FN, et al. Inhibitory beta adrenergic receptors in the human distal esophagus. Am J Dig Dis 1970; 15:303–10.

152 152 Gonella J, Niel JP, Roman C. Mechanism of the noradrenergic motor control on the lower oesophageal sphincter in the cat. J Physiol 1980; 306:251–60.

153 153 Daniel EE, Jager LP, Jury J. Catecholamines release mediators in the opossum oesophageal circular smooth muscle. J Physiol 1987; 382:489–508.

154 154 Smid SD, Blackshaw LA. Vagal neurotransmission to the ferret lower oesophageal sphincter: inhibition via GABA(B) receptors. Br J Pharmacol 2000; 131:624–30.

155 155 Seelig LL, Jr., Doody P, Brainard L, et al. Acetylcholinesterase and choline acetyltransferase staining of neurons in the opossum esophagus. Anat Rec 1984; 209:125–30.

156 156 Faussone‐Pellegrini MS, Cortesini C. Ultrastructural features and localization of the interstitial cells of Cajal in the smooth muscle coat of human esophagus. J Submicrosc Cytol 1985; 17:187–97.

157 157 Gabella G. Fine structure of the myenteric plexus in the guinea‐pig ileum. J Anat 1972; 111:69–97.

158 158 Berezin I, Daniel EE, Huizinga JD. Ultrastructure of interstitial cells of Cajal in the canine distal esophagus. Can J Physiol Pharmacol 1994; 72:1049–59.

159 159 Wong WC, Tan SH, Yick TY, et al. Ultrastructure of interstitial cells of Cajal at the gastro‐oesophageal junction of the monkey (Macaca fascicularis). Acta Anat (Basel) 1990; 138:318–26.

160 160 Clouse RE, Alrakawi A, Staiano A. Intersubject and interswallow variability in topography of esophageal motility. Dig Dis Sci 1998; 43:1978–85.

161 161 Clouse RE, Staiano A, Bickston SJ, et al. Characteristics of the propagating pressure wave in the esophagus. Dig Dis Sci 1996; 41:2369–76.

162 162 Clouse RE, Staiano A. Topography of normal and high‐amplitude esophageal peristalsis. Am J Physiol 1993; 265:G1098–1107.

163 163 Richter JE, Wu WC, Johns DN, et al. Esophageal manometry in 95 healthy adult volunteers. Variability of pressures with age and frequency of “abnormal” contractions. Dig Dis Sci 1987; 32:583–92.

164 164 Gidda JS, Goyal RK. Swallow‐evoked action potentials in vagal preganglionic efferents. J Neurophysiol 1984; 52:1169–80.

165 165 Sarna SK, Daniel EE, Waterfall WE. Myogenic and neural control systems for esophageal motility. Gastroenterology 1977; 73:1345–52.

166 166 Crist J, Gidda JS, Goyal RK. Intramural mechanism of esophageal peristalsis: roles of cholinergic and noncholinergic nerves. Proc Natl Acad Sci U S A 1984; 81:3595–9.

167 167 Roman C, Orengo M, Tieffenbach L. Electromyographic study of esophageal smooth muscle in cats. J Physiol (Paris) 1969; 61 Suppl 2:390.

168 168 Edmundowicz SA, Clouse RE. Shortening of the esophagus in response to swallowing. Am J Physiol 1991; 260:G512–6.

169 169 Nicosia MA, Brasseur JG, Liu JB, et al. Local longitudinal muscle shortening of the human esophagus from high‐frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1022–33.

170 170 Jung HY, Puckett JL, Bhalla V, et al. Asynchrony between the circular and the longitudinal muscle contraction in patients with nutcracker esophagus. Gastroenterology 2005; 128:1179–86.

171 171 Mittal RK, Padda B, Bhalla V, et al. Synchrony between circular and longitudinal muscle contractions during peristalsis in normal subjects. Am J Physiol Gastrointest Liver Physiol 2006; 290:G431–8.

172 172 Mittal RK. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G431–43.

173 173 Christensen J, Lund GF. Esophageal responses to distension and electrical stimulation. J Clin Invest 1969; 48:408–19.

174 174 Pal A, Brasseur JG. The mechanical advantage of local longitudinal shortening on peristaltic transport. J Biomech Eng 2002; 124:94–100.

175 175 Muinuddin A, Paterson WG. Initiation of distension‐induced descending peristaltic reflex in opossum esophagus: role of muscle contractility. Am J Physiol Gastrointest Liver Physiol 2001; 280:G431–8.

176 176 Jiang Y, Bhargava V, Mittal RK. Mechanism of stretch‐activated excitatory and inhibitory responses in the lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 2009; 297:G397–405.

177 177 Dong H, Jiang Y, Dong J, et al. Inhibitory motor neurons of the esophageal myenteric plexus are mechanosensitive. Am J Physiol Cell Physiol 2015; 308:C405–13.

178 178 Korsapati H, Bhargava V, Mittal RK. Reversal of asynchrony between circular and longitudinal muscle contraction in nutcracker esophagus by atropine. Gastroenterology 2008; 135:796–802.

179 179 Korsapati H, Babaei A, Bhargava V, et al. Cholinergic stimulation induces asynchrony between the circular and longitudinal muscle contraction during esophageal peristalsis. Am J Physiol Gastrointest Liver Physiol 2008; 294:G694–8.

180 180 Clouse RE, Staiano A. Topography of the esophageal peristaltic pressure wave. Am J Physiol 1991; 261:G677–84.

181 181 Kahrilas PJ, Dodds WJ, Hogan WJ. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology 1988; 94:73–80.

182 182 Tutuian R, Castell DO. Clarification of the esophageal function defect in patients with manometric ineffective esophageal motility: studies using combined impedance‐manometry. Clin Gastroenterol Hepatol 2004; 2:230–6.

183 183 Tutuian R, Elton JP, Castell DO, et al. Effects of position on oesophageal function: studies using combined manometry and multichannel intraluminal impedance. Neurogastroenterol Motil 2003; 15:63–7.

184 184 Siegel CI, Hendrix TR. Evidence for the central mediation of secondary peristalsis in the esophagus. Bull Johns Hopkins 1961; 108:297–307.

185 185 Cannon WB. Oesophageal peristalsis after bilateral vagotomy. Am J Physiol 1907; 19:436–444.

186 186 Jurica EJ. Studies on the motility of the denervated mammalian esophagus. Am J Physiol 1926; 77:371–384.

187 187 Roman C, Tieffenbach L. Esophageal smooth muscle motility after bivagotomy. Electromyographic study (E.M.G). J Physiol (Paris) 1971; 63:733–62.

188 188 Stacher G, Schmierer G, Landgraf M. Tertiary esophageal contractions evoked by acoustical stimuli. Gastroenterology 1979; 77:49–54.

189 189 Hollis JB, Castell DO. Effect of dry swallows and wet swallows of different volumes on esophageal peristalsis. J Appl Physiol 1975; 38:1161–4.

190 190 Dodds WJ, Hogan WJ, Reid DP, et al. A comparison between primary esophageal peristalsis following wet and dry swallows. J Appl Physiol 1973; 35:851–7.

191 191 Janssens J, Valembois P, Hellemans J, et al. Studies on the necessity of a bolus for the progression of secondary peristalsis in the canine esophagus. Gastroenterology 1974; 67:245–51.

192 192 Longhi EH, Jordan PH, Jr. Necessity of a bolus for propagation of primary peristalsis in the canine esophagus. Am J Physiol 1971; 220:609–12.

193 193 Janssens J, De Wever I, Vantrappen G, et al. Peristalsis in smooth muscle esophagus after transection and bolus deviation. Gastroenterology 1976; 71:1004–9.

194 194 Valdez DT, Salapatek A, Niznik G, et al. Swallowing and upper esophageal sphincter contraction with transcranial magnetic‐induced electrical stimulation. Am J Physiol 1993; 264:G213–9.

195 195 Aziz Q, Rothwell JC, Barlow J, et al. Esophageal myoelectric responses to magnetic stimulation of the human cortex and the extracranial vagus nerve. Am J Physiol 1994; 267:G827–35.

196 196 Aziz Q, Rothwell JC, Hamdy S, et al. The topographic representation of esophageal motor function on the human cerebral cortex. Gastroenterology 1996; 111:855–62.

197 197 Aziz Q, Rothwell JC, Barlow J, et al. Modulation of esophageal responses to magnetic stimulation of the human brain by swallowing and by vagal stimulation. Gastroenterology 1995; 109:1437–45.

198 198 Jordan PHJ LE. Relationship between size of bolus and the act of swallowing on esophageal peristalis in dogs. Proc Soc Exp Biol Med 1971; 137:868–871.

199 199 Chen JH. Ineffective esophageal motility and the vagus: current challenges and future prospects. Clin Exp Gastroenterol 2016; 9:291–299.

200 200 Dooley CP, Schlossmacher B, Valenzuela JE. Effects of alterations in bolus viscosity on esophageal peristalsis in humans. Am J Physiol 1988; 254:G8–11.

201 201 Xiao Y, Read A, Nicodeme F, et al. The effect of a sitting vs supine posture on normative esophageal pressure topography metrics and Chicago Classification diagnosis of esophageal motility disorders. Neurogastroenterol Motil 2012; 24:e509–16.

202 202 Choi YJ, Park MI, Park SJ, et al. The effect of water bolus temperature on esophageal motor function as measured by high‐resolution manometry. Neurogastroenterol Motil 2014; 26:1628–34.

203 203 do Carmo GC, Jafari J, Sifrim D, et al. Normal esophageal pressure topography metrics for data derived from the Sandhill‐Unisensor high‐resolution manometry assembly in supine and sitting positions. Neurogastroenterol Motil 2015; 27:285–92.

204 204 SJ. M. Secondary peristalsis of the esophagus – a demostration on a dog with a permanent esophageal fistula. Proc Soc Exp Biol Med 1906; 4:35–42.

205 205 Blank EL, Greenwood B, Dodds WJ. Cholinergic control of smooth muscle peristalsis in the cat esophagus. Am J Physiol 1989; 257:G517–23.

206 206 Winship DH, Zboralske FF. The esophageal propulsive force: esophageal response to acute obstruction. J Clin Invest 1967; 46:1391–401.

207 207 Zhang X, Tack J, Janssens J, et al. Neural regulation of tone in the oesophageal body: in vivo barostat assessment of volume‐pressure relationships in the feline oesophagus. Neurogastroenterol Motil 2004; 16:13–21.

208 208 Pandolfino JE, Shi G, Zhang Q, et al. Absence of a deglutitive inhibition equivalent with secondary peristalsis. Am J Physiol Gastrointest Liver Physiol 2005; 288:G671–6.

209 209 Mayrand S, Diamant NE. Measurement of human esophageal tone in vivo. Gastroenterology 1993; 105:1411–20.

210 210 Paterson WG, Hynna‐Liepert TT, Selucky M. Comparison of primary and secondary esophageal peristalsis in humans: effect of atropine. Am J Physiol 1991; 260:G52–7.

211 211 Bardan E, Xie P, Aslam M, et al. Disruption of primary and secondary esophageal peristalsis by afferent stimulation. Am J Physiol Gastrointest Liver Physiol 2000; 279:G255–61.

212 212 Schoeman MN, Holloway RH. Stimulation and characteristics of secondary oesophageal peristalsis in normal subjects. Gut 1994; 35:152–8.

213 213 Tieffenbach L, Roman C. The role of extrinsic vagal innervation in the motility of the smooth‐musculed portion of the esophagus: electromyographic study in the cat and the baboon. J Physiol (Paris) 1972; 64:193–226.

214 214 Gidda JS, Buyniski JP. Swallow‐evoked peristalsis in opossum esophagus: role of cholinergic mechanisms. Am J Physiol 1986; 251:G779–85.

215 215 Dodds WJ, Stef JJ, Stewart ET, et al. Responses of feline esophagus to cervical vagal stimulation. Am J Physiol 1978; 235:E63–73.

216 216 Dodds WJ, Christensen J, Dent J, et al. Esophageal contractions induced by vagal stimulation in the opossum. Am J Physiol 1978; 235:E392–401.

217 217 Gilbert RJ, Dodds WJ. Effect of selective muscarinic antagonists on peristaltic contractions in opossum smooth muscle. Am J Physiol 1986; 250:G50–9.

218 218 Helm JF, Bro SL, Dodds WJ, et al. Myogenic mechanism for peristalsis in opossum smooth muscle esophagus. Am J Physiol 1992; 263:G953–9.

219 219 Preiksaitis HG, Diamant NE. Myogenic mechanism for peristalsis in the cat esophagus. Am J Physiol 1999; 277:G306–13.

220 220 Dodds WJ, Dent J, Hogan WJ, et al. Effect of atropine on esophageal motor function in humans. Am J Physiol 1981; 240:G290–6.

221 221 Hollis JB, Castell DO. Effects of cholinergic stimulation on human esophageal peristalsis. J Appl Physiol 1976; 40:40–3.

222 222 Humphries TJ, Castell DO. Effect of oral bethanechol on parameters of esophageal peristalsis. Dig Dis Sci 1981; 26:129–32.

223 223 Christensen J. Patterns and origin of some esophageal responses to stretch and electrical stimulation. Gastroenterology 1970; 59:909–16.

224 224 Gidda JS, Cobb BW, Goyal RK. Modulation of esophageal peristalsis by vagal efferent stimulation in opossum. J Clin Invest 1981; 68:1411–9.

225 225 Crist J, Gidda JS, Goyal RK. Characteristics of “on” and “off” contractions in esophageal circular muscle in vitro. Am J Physiol 1984; 246:G137–44.

226 226 Preiksaitis HG LL, Inculet R. Characterization of muscarinic receptors in human esophageal smooth muscle (abstr). Gastroenterology 1996; 110:A1108.

227 227 Daniel EE, Jury J, Bowker P. Muscarinic receptors on nerves and muscles in opossum esophagus muscularis mucosa. Can J Physiol Pharmacol 1987; 65:1903–7.

228 228 Decktor DL, Ryan JP. Transmembrane voltage of opossum esophageal smooth muscle and its response to electrical stimulation of intrinsic nerves. Gastroenterology 1982; 82:301–8.

229 229 Diamant NE, Chan W. The electrical off‐response of cat circular esophageal smooth muscle: The effect of stimulus frequency on its timing. In: Proceedings of the fifth international symposium on gastrointestinal motility. Vantrappen G., ed. Typoff‐Press; 1975. p. 158–63.

230 230 Serio R, Daniel EE. Electrophysiological analysis of responses to intrinsic nerves in circular muscle of opossum esophageal muscle. Am J Physiol 1988; 254:G107–16.

231 231 Crist J, Surprenant A, Goyal RK. Intracellular studies of electrical membrane properties of opossum esophageal circular smooth muscle. Gastroenterology 1987; 92:987–92.

232 232 Preiksaitis HG, Tremblay L, Diamant NE. Nitric oxide mediates inhibitory nerve effects in human esophagus and lower esophageal sphincter. Dig Dis Sci 1994; 39:770–5.

233 233 Paterson WG. Electrical correlates of peristaltic and nonperistaltic contractions in the opossum smooth muscle esophagus. Gastroenterology 1989; 97:665–75.

234 234 Diamant NE. Electrical activity of the cat smooth muscle esophagus: A study of hyperpolarizing responses. In: Daniel EE, ed. Proceedings of the fourth international symposium on gastrointestinal motility. Vancouver: Mitchell Press; 1973. p. 593–605.

235 235 Sugarbaker DJ, Rattan S, Goyal RK. Mechanical and electrical activity of esophageal smooth muscle during peristalsis. Am J Physiol 1984; 246:G145–50.

236 236 Rattan S, Gidda JS, Goyal RK. Membrane potential and mechanical responses of the opossum esophagus to vagal stimulation and swallowing. Gastroenterology 1983; 85:922–8.

237 237 Gidda JS, Goyal RK. Influence of successive vagal stimulations on contractions in esophageal smooth muscle of opossum. J Clin Invest 1983; 71:1095–103.

238 238 Weisbrodt NW, Christensen J. Gradients of contractions in the opossum esophagus. Gastroenterology 1972; 62:1159–66.

239 239 Crist J, Kauvar D, Goyal RK. Gradient of cholinergic innervation in opossum esophageal circular smooth muscle. Gullet 1991; 1:92–98.

240 240 Yamato S, Spechler SJ, Goyal RK. Role of nitric oxide in esophageal peristalsis in the opossum. Gastroenterology 1992; 103:197–204.

241 241 Dodds WJ, Dent J, Hogan WJ, et al. Paradoxical lower esophageal sphincter contraction induced by cholecystokinin‐octapeptide in patients with achalasia. Gastroenterology 1981; 80:327–33.

242 242 Knudsen A, Frobert O, Tottrup A. The role of the L‐arginine‐nitric oxide pathway for peristalsis in the opossum oesophageal body. Scand J Gastroenterol 1994; 29:1083–7.

243 243 Chakder S, Rosenthal GJ, Rattan S. in vivo and in vitro influence of human recombinant hemoglobin on esophageal function. Am J Physiol 1995; 268:G443–50.

244 244 Murray JA, Ledlow A, Launspach J, et al. The effects of recombinant human hemoglobin on esophageal motor functions in humans. Gastroenterology 1995; 109:1241–8.

245 245 Xue S, Valdez D, Collman PI, et al. Effects of nitric oxide synthase blockade on esophageal peristalsis and the lower esophageal sphincter in the cat. Can J Physiol Pharmacol 1996; 74:1249–57.

246 246 Saha JK, Hirano I, Goyal RK. Biphasic effect of SNP on opossum esophageal longitudinal muscle: involvement of cGMP and eicosanoids. Am J Physiol 1993; 265:G403–7.

247 247 Cohen S, Green F. Force‐velocity characteristics of esophageal muscle: effect of acetylcholine and norepinephrine. Am J Physiol 1974; 226:1250–6.

248 248 Rattan S, Gonnella P, Goyal RK. Inhibitory effect of calcitonin gene‐related peptide and calcitonin on opossum esophageal smooth muscle. Gastroenterology 1988; 94:284–93.

249 249 Holzer P. Acid‐sensitive ion channels in gastrointestinal function. Curr Opin Pharmacol 2003; 3:618–25.

250 250 Lee KJ, Vos R, Janssens J, et al. Differential effects of baclofen on lower oesophageal sphincter pressure and proximal gastric motility in humans. Aliment Pharmacol Ther 2003; 18:199–207.

251 251 Schulze K, Conklin JL, Christensen J. A potassium gradient in smooth muscle segment of the opossum esophagus. Am J Physiol 1977; 232:E270–3.

252 252 Stacher G, Bauer P, Steinringer H, et al. Dose‐related effects of the synthetic met‐enkephalin analogue FK 33–824 on esophageal motor activity in healthy humans. Gastroenterology 1982; 83:1057–61.

253 253 Krysiak PS, Preiksaitis HG. Tachykinins contribute to nerve‐mediated contractions in the human esophagus. Gastroenterology 2001; 120:39–48.

254 254 Behar J, Biancani P. Pathogenesis of simultaneous esophageal contractions in patients with motility disorders. Gastroenterology 1993; 105:111–8.

255 255 Mearin F, Mourelle M, Guarner F, et al. Patients with achalasia lack nitric oxide synthase in the gastro‐oesophageal junction. Eur J Clin Invest 1993; 23:724–8.

256 256 Kassim SK, El Touny M, El Guinaidy M, et al. Serum nitrates and vasoactive intestinal peptide in patients with gastroesophageal reflux disease. Clin Biochem 2002; 35:641–6.

257 257 Park H, Calrk E, Cullen JJ, et al. Effect of endotoxin on opossum oesophageal motor function. Neurogastroenterol Motil 2000; 12:215–21.

258 258 Daniel EE, Bardakjian BL, Huizinga JD, Diamant NE. Relaxation oscillators and core conductor models are needed for understanding of GI electrical activities. Am J Physiol 1994; 266:G339–349.

259 259 Bardakjian BL, Diamant NE. Electronic models of oscillator‐to‐oscillator communications. In: Sperelakis N, Cole W, eds. Cell interactions and gap junctions. CRC Press; 1989. p. 211–224.

260 260 Kannan MS, Jager LP, Daniel EE. Electrical properties of smooth muscle cell membrane of opossum esophagus. Am J Physiol 1985; 248:G342–6.

261 261 Nelson DO, Mangel AW. Acetylcholine induced slow‐waves in cat esophageal smooth muscle. Gen Pharmacol 1979; 10:19–20.

262 262 Helm JF, Bro SL, Dodds WJ, et al. Myogenic oscillatory mechanism for opossum esophageal smooth muscle contractions. Am J Physiol 1991; 261:G377–83.

263 263 Salapatek AM, Ji J, Diamant NE. Ion channel diversity in the feline smooth muscle esophagus. Am J Physiol Gastrointest Liver Physiol 2002; 282:G288–99.

264 264 Muinuddin A, Xue S, Diamant NE. Regional differences in the response of feline esophageal smooth muscle to stretch and cholinergic stimulation. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1460–7.

265 265 Szymanski PT, Chacko TK, Rovner AS, et al. Differences in contractile protein content and isoforms in phasic and tonic smooth muscles. Am J Physiol 1998; 275:C684–92.

266 266 Biancani P, Sohn UD, Rich HG, et al. Signal transduction pathways in esophageal and lower esophageal sphincter circular muscle. Am J Med 1997; 103:23S–28S.

267 267 Cao W, Sohn UD, Bitar KN, et al. MAPK mediates PKC‐dependent contraction of cat esophageal and lower esophageal sphincter circular smooth muscle. Am J Physiol Gastrointest Liver Physiol 2003; 285:G86–95.

268 268 Liu J, Puckett JL, Takeda T, et al. Crural diaphragm inhibition during esophageal distension correlates with contraction of the esophageal longitudinal muscle in cats. Am J Physiol Gastrointest Liver Physiol 2005; 288:G927–32.

269 269 Yamamoto Y, Liu J, Smith TK, et al. Distension‐related responses in circular and longitudinal muscle of the human esophagus: an ultrasonographic study. Am J Physiol 1998; 275:G805–11.

270 270 Crist J, Gidda J, Goyal RK. Role of substance P nerves in longitudinal smooth muscle contractions of the esophagus. Am J Physiol 1986; 250:G336–43.

271 271 Zhang Y, Paterson WG. Nitric oxide contracts longitudinal smooth muscle of opossum oesophagus via excitation‐contraction coupling. J Physiol 2001; 536:133–40.

272 272 Paterson WG, Kolyn DM. Esophageal shortening induced by short‐term intraluminal acid perfusion in opossum: a cause for hiatus hernia? Gastroenterology 1994; 107:1736–40.

273 273 White RJ, Zhang Y, Morris GP, et al. Esophagitis‐related esophageal shortening in opossum is associated with longitudinal muscle hyperresponsiveness. Am J Physiol Gastrointest Liver Physiol 2001; 280:G463–9.

274 274 Vanek AW, Diamant NE. Responses of the human esophagus to paired swallows. Gastroenterology 1987; 92:643–50.

275 275 Hellemans J, Vantrappen G, Janssens J. Electromyography of the esophagus. 4. The deglutitive inhibition. In: Diseases of the esophagus. New York: Springer‐Verlag; 1974. p. 280–284.

276 276 Ask P, Tibbling L. Effect of time interval between swallows on esophageal peristalsis. Am J Physiol 1980; 238:G485–90.

277 277 Shaker A, Stoikes N, Drapekin J, et al. Multiple rapid swallow responses during esophageal high‐resolution manometry reflect esophageal body peristaltic reserve. Am J Gastroenterol 2013; 108:1706–12.

278 278 Fornari F, Bravi I, Penagini R, et al. Multiple rapid swallowing: a complementary test during standard oesophageal manometry. Neurogastroenterol Motil 2009; 21:718–e41.

279 279 Shi G, Pandolfino JE, Zhang Q, et al. Deglutitive inhibition affects both esophageal peristaltic amplitude and shortening. Am J Physiol Gastrointest Liver Physiol 2003; 284:G575–82.

280 280 Gyawali CP, Patel A. Esophageal motor function: technical aspects of manometry. Gastrointest Endosc Clin N Am 2014; 24:527–43.

281 281 Mittal RK, Balaban DH. The esophagogastric junction. N Engl J Med 1997; 336:924–32.

282 282 Kwiatek MA, Pandolfino JE, Kahrilas PJ. 3D‐high resolution manometry of the esophagogastric junction. Neurogastroenterol Motil 2011; 23:e461–9.

283 283 Kwok H Marriz Y, Al‐Ali S, Windsor JA. Phrenoesophageal ligament re‐visited. Clin Anat 1999; 12:164–170.

284 284 Kahrilas PJ, Lin S, Chen J, et al. The effect of hiatus hernia on gastro‐oesophageal junction pressure. Gut 1999; 44:476–82.

285 285 Apaydin N, Uz A, Evirgen O, et al. The phrenico‐esophageal ligament: an anatomical study. Surg Radiol Anat 2008; 30:29–36.

286 286 Tierney BJ, Iqbal A, Awad Z, et al. Sub‐diaphragmatic fascia: role in the recurrence of hiatal hernias. Dis Esophagus 2006; 19:111–3.

287 287 Marchand P. The anatomy of esophageal hiatus of the diaphragm and the pathogenesis of hiatus herniation. J Thorac Surg 1959; 37:81–92.

288 288 Dobbins EG, Feldman JL. Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol 1994; 347:64–86.

289 289 Niedringhaus M, Jackson PG, Pearson R, et al. Brainstem sites controlling the lower esophageal sphincter and crural diaphragm in the ferret: a neuroanatomical study. Auton Neurosci 2008; 144:50–60.

290 290 Young RL, Page AJ, Cooper NJ, et al. Sensory and motor innervation of the crural diaphragm by the vagus nerves. Gastroenterology 2010; 138:1091–101 e1–5.

291 291 Jackson AJ. The spiral constrictor of the gastroesophageal junction. Am J Anat 1978; 151:265–75.

292 292 Apaydin N UA, Elhan A, Loukas M, Tubbs RS. Does an anatomical sphincter exist in the distal esophagus? Surg Radiol Anat 2008; 30:11–16.

293 293 Brasseur JG, Ulerich R, Dai Q, et al. Pharmacological dissection of the human gastro‐oesophageal segment into three sphincteric components. J Physiol 2007; 580:961–75.

294 294 Miller L, Dai Q, Vegesna A, et al. A missing sphincteric component of the gastro‐oesophageal junction in patients with GORD. Neurogastroenterol Motil 2009; 21:813–e52.

295 295 McCray WH J, Chung C, Parkman HP, Miller LS. Use of simultaneous high‐resolution endoluminal sonography (HRES) and manometry to characterize high pressure zone of distal esophagus. Dig Dis Sci 2000; 45:1660–1666.

296 296 Wheeler CB, Kohatsu S. Canine gastric sling fibers: contractile properties. Am J Surg 1980; 139:175–82.

297 297 Beck CS, Osa T. Membrane activity in guinea pig gastric sling muscle: a nerve‐dependent phenomenon. Am J Physiol 1971; 220:1397–403.

298 298 Preiksaitis HG, Diamant NE. Regional differences in cholinergic activity of muscle fibers from the human gastroesophageal junction. Am J Physiol 1997; 272:G1321–7.

299 299 Friedland GW, Kohatsu S, Lewin K. Comparative anatomy of feline and canine gastric sling fibers. Analogy to human anatomy. Am J Dig Dis 1971; 16:493–507.

300 300 Lendrum FC. Anatomic features of the cardiac orifice of the stomach (with special reference to cardiospasm). Arch Intern Med 1937; 59:474–511.

301 301 Gahagan T. The function of the musculature of the esophagus and stomach in the esophagogastric sphincter mechanism. Surg Gynecol Obstet 1962; 114:293–303.

302 302 Hill LD, Kozarek RA, Kraemer SJ, et al. The gastroesophageal flap valve: in vitro and in vivo observations. Gastrointest Endosc 1996; 44:541–7.

303 303 Korn O, Csendes A, Burdiles P, et al. Anatomic dilatation of the cardia and competence of the lower esophageal sphincter: a clinical and experimental study. J Gastrointest Surg 2000; 4:398–406.

304 304 Gordon C, Kang JY, Neild PJ, et al. The role of the hiatus hernia in gastro‐oesophageal reflux disease. Aliment Pharmacol Ther 2004; 20:719–32.

305 305 Fujiwara Y, Nakagawa K, Kusunoki M, et al. Gastroesophageal reflux after distal gastrectomy: possible significance of the angle of His. Am J Gastroenterol 1998; 93:11–5.

306 306 Ismail T, Bancewicz J, Barlow J. Yield pressure, anatomy of the cardia and gastro‐oesophageal reflux. Br J Surg 1995; 82:943–7.

307 307 Seelig LL, Jr., Goyal RK. Morphological evaluation of opossum lower esophageal sphincter. Gastroenterology 1978; 75:51–8.

308 308 Farre R, Wang XY, Vidal E, et al. Interstitial cells of Cajal and neuromuscular transmission in the rat lower oesophageal sphincter. Neurogastroenterol Motil 2007; 19:484–96.

309 309 Ward SM, Morris G, Reese L, et al. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 1998; 115:314–29.

310 310 Zhang Y, Carmichael SA, Wang XY, et al. Neurotransmission in lower esophageal sphincter of W/Wv mutant mice. Am J Physiol Gastrointest Liver Physiol 2010; 298:G14–24.

311 311 Sarna SK. Are interstitial cells of Cajal plurifunction cells in the gut? Am J Physiol Gastrointest Liver Physiol 2008; 294:G372–90.

312 312 Stein HJ, Liebermann‐Meffert D, DeMeester TR, et al. Three‐dimensional pressure image and muscular structure of the human lower esophageal sphincter. Surgery 1995; 117:692–8.

313 313 Higgs RH, Castell DO. The effect of truncal vagotomy on lower esophageal sphincter pressure and response to cholinergic stimulation. Proc Soc Exp Biol Med 1976; 153:379–82.

314 314 Temple JG GR, Hay DJ, Miller D. Effect of highly selective vagotomy upon the lower oesophageal sphincter. Gut 1981; 22:368–370.

315 315 Ny L, Alm P, Ekstrom P, et al. Nitric oxide synthase‐containing, peptide‐containing, and acetylcholinesterase‐positive nerves in the cat lower oesophagus. Histochem J 1994; 26:721–33.

316 316 Szewczak SM, Behar J, Billett G, et al. VIP‐induced alterations in cAMP and inositol phosphates in the lower esophageal sphincter. Am J Physiol 1990; 259:G239–44.

317 317 Imaeda K JT, Yamamoto Y, Itoh M, Suzuki H. Properties of inhibitory junctional transmission in smooth muscle of the guinea pig lower esophageal sphincter. Jpn J Physiol 1998; 48:457–465.

318 318 Imaeda K, Cunnane TC. Electrophysiological properties of inhibitory junction potential in murine lower oesophageal sphincter. J Smooth Muscle Res 2003; 39:119–33.

319 319 Biancani P, Beinfeld MC, Hillemeier C, et al. Role of peptide histidine isoleucine in relaxation of cat lower esophageal sphincter. Gastroenterology 1989; 97:1083–9.

320 320 L'Heureux MC, Muinuddin A, Gaisano HY, et al. Feline lower esophageal sphincter sling and circular muscles have different functional inhibitory neuronal responses. Am J Physiol Gastrointest Liver Physiol 2006; 290:G23–9.

321 321 Yuan S, Costa M, Brookes SJ. Neuronal pathways and transmission to the lower esophageal sphincter of the guinea Pig. Gastroenterology 1998; 115:661–71.

322 322 Yuan S, Brookes SJ. Neuronal control of the gastric sling muscle of the guinea pig. J Comp Neurol 1999; 412:669–80.

323 323 Gonella J, Niel JP, Roman C. Sympathetic control of lower oesophageal sphincter motility in the cat. J Physiol 1979; 287:177–90.

324 324 Tian ZQ, Liu JF, Wang GY, et al. Responses of human clasp and sling fibers to neuromimetics. J Gastroenterol Hepatol 2004; 19:440–7.

325 325 Oriowo MA. Neural inhibition in the rat lower esophageal sphincter: role of beta 3–adrenoceptor activation. Gen Pharmacol 1998; 30:37–41.

326 326 Goyal RK, Rattan S. Nature of the vagal inhibitory innervation to the lower esophageal sphincter. J Clin Invest 1975; 55:1119–26.

327 327 Behar J, Biancani P. Effect of cholecystokinin‐octapeptide on lower esophageal sphincter. Gastroenterology 1977; 73:57–61.

328 328 Rattan S, Goyal RK. Structure‐activity relationship of subtypes of cholecystokinin receptors in the cat lower esophageal sphincter. Gastroenterology 1986; 90:94–102.

329 329 Salapatek AM, Hynna‐Liepert T, Diamant NE. Mechanism of action of cholecystokinin octapeptide on cat lower esophageal sphincter. Am J Physiol 1992; 263:G419–25.

330 330 Miolan JP, Roman C. Activity of vagal efferent fibres innervating the smooth muscle of the dog's cardia. J Physiol (Paris) 1978; 74:709–23.

331 331 Miolan JP, Roman C. Discharge of vagal efferent fibers innervating the cardia in dogs. J Physiol (Paris) 1973; 66:171–98.

332 332 Paterson WG, Rattan S, Goyal RK. Esophageal responses to transient and sustained esophageal distension. Am J Physiol 1988; 255:G587–95.

333 333 Reynolds RP, El‐Sharkawy TY, Diamant NE. Lower esophageal sphincter function in the cat: role of central innervation assessed by transient vagal blockade. Am J Physiol 1984; 246:G666–74.

334 334 Mittal RK, Rochester DF, McCallum RW. Electrical and mechanical activity in the human lower esophageal sphincter during diaphragmatic contraction. J Clin Invest 1988; 81:1182–9.

335 335 Salapatek AM, Ji J, Muinuddin A, et al. Potassium channel diversity within the muscular components of the feline lower esophageal sphincter. Can J Physiol Pharmacol 2004; 82:1006–17.

336 336 Muinuddin A, Neshatian L, Gaisano HY, et al. Calcium source diversity in feline lower esophageal sphincter circular and sling muscle. Am J Physiol Gastrointest Liver Physiol 2004; 286:G271–7.

337 337 Muinuddin A, Kang Y, Gaisano HY, et al. Regional differences in L‐type Ca2+ channel expression in feline lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 2004; 287:G772–81.

338 338 Harnett KM, Cao W, Biancani P. Signal‐transduction pathways that regulate smooth muscle function I. Signal transduction in phasic (esophageal) and tonic (gastroesophageal sphincter) smooth muscles. Am J Physiol Gastrointest Liver Physiol 2005; 288:G407–16.

339 339 Cao WB, Harnett KM, Chen Q, et al. Group I secreted PLA2 and arachidonic acid metabolites in the maintenance of cat LES tone. Am J Physiol 1999; 277:G585–98.

340 340 Sohn UD, Harnett KM, Cao W, et al. Acute experimental esophagitis activates a second signal transduction pathway in cat smooth muscle from the lower esophageal sphincter. J Pharmacol Exp Ther 1997; 283:1293–304.

341 341 Rich H, Sohn UD, Behar J, et al. Experimental esophagitis affects intracellular calcium stores in the cat lower esophageal sphincter. Am J Physiol 1997; 272:G1523–9.

342 342 Cheng L, Cao W, Behar J, et al. Inflammation induced changes in arachidonic acid metabolism in cat LES circular muscle. Am J Physiol Gastrointest Liver Physiol 2005; 288:G787–97.

343 343 Preiksaitis HG, Diamant NE. Phasic contractions of the muscular components of human esophagus and gastroesophageal junction in vitro. Can J Physiol Pharmacol 1995; 73:356–63.

344 344 Asoh R, Goyal RK. Electrical activity of the opossum lower esophageal sphincter in vivo. Its role in the basal sphincter pressure. Gastroenterology 1978; 74:835–40.

345 345 Holloway RH, Blank EL, Takahashi I, et al. Electrical control activity of the lower esophageal sphincter in unanesthetized opossums. Am J Physiol 1987; 252:G511–21.

346 346 Walton PD, Huizinga JD. Stimulus‐dependent pacemaker activity in the distal canine lower esophageal sphincter. Can J Physiol Pharmacol 1989; 67:1331–5.

347 347 Huizinga JD, Walton PD. Pacemaker activity in the proximal lower oesophageal sphincter of the dog. J Physiol 1989; 408:19–30.

348 348 Zhang Y, Miller DV, Paterson WG. Opposing roles of K(+) and Cl(‐) channels in maintenance of opossum lower esophageal sphincter tone. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1226–34.

349 349 Farrell RL, Roling GT, Castell DO. Cholinergic therapy of chronic heartburn. A controlled trial. Ann Intern Med 1974; 80:573–6.

350 350 Bortolotti M, Labo G. Clinical and manometric effects of nifedipine in patients with esophageal achalasia. Gastroenterology 1981; 80:39–44.

351 351 Eherer AJ, Schwetz I, Hammer HF, et al. Effect of sildenafil on oesophageal motor function in healthy subjects and patients with oesophageal motor disorders. Gut 2002; 50:758–64.

352 352 Bortolotti M, Pandolfo N, Giovannini M, et al. Effect of Sildenafil on hypertensive lower oesophageal sphincter. Eur J Clin Invest 2002; 32:682–5.

353 353 Birgisson S, Richter JE. Long‐term outcome of botulinum toxin in the treatment of achalasia. Gastroenterology 1996; 111:1162–3.

354 354 Korn O, Braghetto I, Burdiles P, et al. Cardiomyotomy in achalasia: which fibers do we cut? Dis Esophagus 2000; 13:104–7; discussion 108–9.

355 355 Boyle JT, Altschuler SM, Nixon TE, et al. Responses of feline gastroesophageal junction to changes in abdominal pressure. Am J Physiol 1987; 253:G315–22.

356 356 Mittal RK, Fisher M, McCallum RW, et al. Human lower esophageal sphincter pressure response to increased intra‐abdominal pressure. Am J Physiol 1990; 258:G624–30.

357 357 Crispin JS, McIver DK, Lind JF. Manometric study of the effect of vagotomy on the gastroesophageal sphincter. Can J Surg 1967; 10:299–303.

358 358 Dodds WJ, Hogan WJ, Miller WN, et al. Effect of increased intraabdominal pressure on lower esophageal sphincter pressure. Am J Dig Dis 1975; 20:298–308.

359 359 DiLorenzo C, Dooley CP, Valenzuela JE. Response of lower esophageal sphincter to alterations of intraabdominal pressure. Dig Dis Sci 1989; 34:1606–10.

360 360 Babka JC, Hager GW, Castell DO. The effect of body position on lower esophageal sphincter pressure. Am J Dig Dis 1973; 18:441–2.

361 361 Sears VW, Jr., Castell JA, Castell DO. Comparison of effects of upright versus supine body position and liquid versus solid bolus on esophageal pressures in normal humans. Dig Dis Sci 1990; 35:857–64.

362 362 Nebel OT, Castell DO. Lower esophageal sphincter pressure changes after food ingestion. Gastroenterology 1972; 63:778–83.

363 363 Nebel OT, Castell DO. Inhibition of the lower oesophageal sphincter by fat – a mechanism for fatty food intolerance. Gut 1973; 14:270–4.

364 364 Wright LE, Castell DO. The adverse effect of chocolate on lower esophageal sphincter pressure. Am J Dig Dis 1975; 20:703–7.

365 365 Hogan WJ, Viegas de Andrade SR, Winship DH. Ethanol‐induced acute esophageal motor dysfunction. J Appl Physiol 1972; 32:755–60.

366 366 Dennish GW, Castell DO. Caffeine and the lower esophageal sphincter. Am J Dig Dis 1972; 17:993–6.

367 367 Piche T, Zerbib F, Varannes SB, et al. Modulation by colonic fermentation of LES function in humans. Am J Physiol Gastrointest Liver Physiol 2000; 278:G578–84.

368 368 Dennish GW, Castell DO. Inhibitory effect of smoking on the lower esophageal sphincter. N Engl J Med 1971; 284:1136–7.

369 369 Baron TH, Richter JE. Gastroesophageal reflux disease in pregnancy. Gastroenterol Clin North Am 1992; 21:777–91.

370 370 Orr WC, Heading R, Johnson LF, et al. Review article: sleep and its relationship to gastro‐oesophageal reflux. Aliment Pharmacol Ther 2004; 20 Suppl 9:39–46.

371 371 Pasricha PJ. Effect of sleep on gastroesophageal physiology and airway protective mechanisms. Am J Med 2003; 115 Suppl 3A:114S–118S.

372 372 Farre R, Sifrim D. Regulation of basal tone, relaxation and contraction of the lower oesophageal sphincter. Relevance to drug discovery for oesophageal disorders. Br J Pharmacol 2008; 153:858–69.

373 373 Dodds WJ, Dent J, Hogan WJ, et al. Mechanisms of gastroesophageal reflux in patients with reflux esophagitis. N Engl J Med 1982; 307:1547–52.

374 374 Mittal RK, McCallum RW. Characteristics and frequency of transient relaxations of the lower esophageal sphincter in patients with reflux esophagitis. Gastroenterology 1988; 95:593–9.

375 375 He S, Jell A, Huser N, et al. 24–hour monitoring of transient lower esophageal sphincter relaxation events by long‐term high‐resolution impedance manometry in normal volunteers: The “mirror phenomenon.” Neurogastroenterol Motil 2019; 31:e13530.

376 376 Dent J, Dodds WJ, Friedman RH, et al. Mechanism of gastroesophageal reflux in recumbent asymptomatic human subjects. J Clin Invest 1980; 65:256–67.

377 377 Mittal RK, Holloway RH, Penagini R, et al. Transient lower esophageal sphincter relaxation. Gastroenterology 1995; 109:601–10.

378 378 McNally EF, Kelly JE, Jr., Ingelfinger FJ. Mechanism of Belching: Effects of Gastric Distension with Air. Gastroenterology 1964; 46:254–9.

379 379 Mittal RK, Fisher MJ. Electrical and mechanical inhibition of the crural diaphragm during transient relaxation of the lower esophageal sphincter. Gastroenterology 1990; 99:1265–8.

380 380 Noordzij JP, Mittal RK, Arora T, et al. The effect of mechanoreceptor stimulation of the laryngopharynx on the oesophago‐gastric junction. Neurogastroenterol Motil 2000; 12:353–9.

381 381 Pouderoux P, Verdier E, Kahrilas PJ. Patterns of esophageal inhibition during swallowing, pharyngeal stimulation, and transient LES relaxation. Lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 2003; 284:G242–7.

382 382 Roman S, Holloway R, Keller J, et al. Validation of criteria for the definition of transient lower esophageal sphincter relaxations using high‐resolution manometry. Neurogastroenterol Motil 2017; 29.

383 383 Hirsch DP, Tytgat GN, Boeckxstaens GE. Transient lower oesophageal sphincter relaxations‐‐a pharmacological target for gastro‐oesophageal reflux disease? Aliment Pharmacol Ther 2002; 16:17–26.

384 384 Lidums I, Lehmann A, Checklin H, et al. Control of transient lower esophageal sphincter relaxations and reflux by the GABA(B) agonist baclofen in normal subjects. Gastroenterology 2000; 118:7–13.

385 385 Boulant J, Mathieu S, D'Amato M, et al. Cholecystokinin in transient lower oesophageal sphincter relaxation due to gastric distension in humans. Gut 1997; 40:575–81.

386 386 Lidums I, Checklin H, Mittal RK, et al. Effect of atropine on gastro‐oesophageal reflux and transient lower oesophageal sphincter relaxations in patients with gastro‐oesophageal reflux disease. Gut 1998; 43:12–6.

387 387 Babaei A, Mittal R. Cholecystokinin induces esophageal longitudinal muscle contraction and transient lower esophageal sphincter relaxation in healthy humans. Am J Physiol Gastrointest Liver Physiol 2018; 315:G734–G742.

388 388 Lee YY, Whiting JG, Robertson EV, et al. Kinetics of transient hiatus hernia during transient lower esophageal sphincter relaxations and swallows in healthy subjects. Neurogastroenterol Motil 2012; 24:990–e539.

389 389 Heine KJ, Mittal RK. Crural diaphragm and lower esophageal sphincter as antireflux barriers. Viewpoints Dig Dis 1991; 23:1–6.

390 390 Altschuler SM, Boyle JT, Nixon TE, et al. Simultaneous reflex inhibition of lower esophageal sphincter and crural diaphragm in cats. Am J Physiol 1985; 249:G586–91.

391 391 Pandolfino JE, Kim H, Ghosh SK, et al. High‐resolution manometry of the EGJ: an analysis of crural diaphragm function in GERD. Am J Gastroenterol 2007; 102:1056–63.

392 392 Rengarajan A, Bolkhir A, Gor P, et al. Esophagogastric junction and esophageal body contraction metrics on high resolution manometry predict esophageal acid burden. Neurogastroenterol Motil 2018;in press.

393 393 Rengarajan A, Gyawali CP. High‐resolution Manometry can Characterize Esophagogastric Junction Morphology and Predict Esophageal Reflux Burden. J Clin Gastroenterol 2019.

The Esophagus

Подняться наверх