Читать книгу Polysaccharides - Группа авторов - Страница 52
References
Оглавление1. Latge, J., 30 years of battling the cell wall. Sabouraudia, 55, 1, 4–9, 2016.
2. Yoo, H.D., Kim, D., Paek, S.H., Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomol. Ther., 20, 4, 371, 2012.
3. Miedes, E. et al., The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci., 5, 358, 2014.
4. Lee, K.J., Marcus, S.E., Knox, J.P., Cell wall biology: Perspectives from cell wall imaging. Mol. Plant, 4, 2, 212–219, 2011.
5. McCann, M.C. and Knox, J.P., Plant cell wall biology: Polysaccharides in architectural and developmental contexts. Annu. Plant Rev., online, 41, 343–366, 2018.
6. Waldron, K. and Faulds, C., Cell wall polysaccharides: Composition and structure, Elsevier, United Kingdom, 2007.
7. Ochoa-Villarreal, M. et al., Plant cell wall polymers: function, structure and biological activity of their derivatives. Polymerization, 4, 63–86, 2012.
8. Brett, C.T. and Waldron, K.W., Physiology and biochemistry of plant cell walls, vol. 2, Springer Science and Business Media, Netherland, 1996.
9. Carpita, N.C. and Gibeaut, D.M., Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plan. J., 3, 1, 1–30, 1993.
10. Videcoq, P. et al., Examining the contribution of cell wall polysaccharides to the mechanical properties of apple parenchyma tissue using exogenous enzymes. J. Exp. Bot., 68, 18, 5137– 5146, 2017.
11. Faik, A. and Held, M., Plant cell wall biochemical omics: The high-throughput biochemistry for polysaccharide biosynthesis. Plant. Sci., 286, 49–56, 2019.
12. Gupta, P.K. et al., An update on overview of cellulose, its structure and applications, IntechOpen, United Kingdom, 2019.
13. Scheller, H.V. and Ulvskov, P., Hemicelluloses. Annu, 61, 263–89, 2010.
14. Kulkarni Vishakha, S., Butte Kishor, D., Rathod Sudha, S., Natural polymers—A comprehensive review. Int. J. Pharm., 3, 4, 1597–1613, 2012.
15. Piqué, N., Gomez-Guillen, M.D.C., Montero, M.P., Xyloglucan, a plant polymer with barrier protective properties over the mucous membranes: An overview. Int. J. Mol., 19, 3, 673, 2018.
16. Fry, S.C., The structure and functions of xyloglucan. J. Exp. Bot., 40, 1, 1–11, 1989.
17. Claverie, J. et al., The cell wall-derived xyloglucan is a new DAMP triggering plant immunity in Vitis vinifera and Arabidopsis thaliana. Front. Plant Sci., 9, 1725, 2018.
18. Wierzbicki, M.P. et al., Xylan in the middle: Understanding xylan biosynthesis and its metabolic dependencies towards improving wood fibre for industrial processing. Front. Plant Sci., 10, 176, 2019.
19. Pidatala, V.R., Mahboubi, A., Mortimer, J.C., Structural characterization of mannan cell wall polysaccharides in plants using PACE. JoVE, 128, 56424, 2017.
20. Pirselova, B. and Matusikova, I., Callose: The plant cell wall polysaccharide with multiple biological functions. Acta Physiol. Plant., 35, 3, 635–644, 2013.
21. Chen, X.-Y. and Kim, J.-Y., Callose synthesis in higher plants. Plant Signal. Behav., 4, 6, 489– 492, 2009.
22. Nedukha, O., Callose: Localization, functions, and synthesis in plant cells. Cytol. Genet., 49, 1, 49–57, 2015.
23. Yapo, B.M., Pectic substances: From simple pectic polysaccharides to complex pectin: New model. Carbohydr. Polym., 86, 2, 373–385, 2011.
24. Voragen, A.G. et al., Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem., 20, 2, 263, 2009.
25. Wolf, S., Mouille, G., Pelloux, J., Homogalacturonan methyl-esterification and plant development. Mol. Plant, 2, 5, 851–860, 2009.
26. Yapo, B.M., Rhamnogalacturonan-I: A structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym. Rev., 51, 4, 391–413, 2011.
27. O’Neill, M.A., Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol., 55, 109–139, 2004.
28. Wefers, D., Tyl, C.E., Bunzel, M., Novel arabinan and galactan oligosaccharides from dicotyledonous plants. Front. Chem., 2, 100, 2014.
29. Wefers, D., Flörchinger, R., Bunze, M., Detailed structural characterization of arabinans and galactans of 14 apple cultivars before and after cold storage. Front. Plant Sci., 9, 1451, 2018.
30. Peters, M. et al., Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. J. Allergy Clin. Immunol., 126, 3, 648–656, 2010.
31. Knoch, E., Dilokpimol, A., Geshi, N., Arabinogalactan proteins: Focus on carbohydrate active enzymes. Front. Plant Sci., 5, 198, 2014.
32. Synytsya, A. et al., Cell wall polysaccharides of marine algae, in: Springer Handbook of Marine Biotechnology, pp. 543–590, Springer, Berlin, Heidelberg, 2015.
33. Domozych, D. et al., The cell walls of green algae: A journey through evolution and diversity. Front. Plant Sci., 3, 82, 2012.
34. Popper, Z.A., Ralet, M.-C., Domozych, D.S., Plant and algal cell walls: Diversity and functionality. Ann. Bot., 114, 6, 1043–1048, 2014.
35. Rabille, H., Alginates along the filament of the brown alga Ectocarpus help cells cope with stress. Sci. Rep., 9, 1, 1–17, 2019.
36. Estevez, J.M., Ciancia, M., Cerezo, A.S., The system of sulfated galactans from the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta): Location and structural analysis. Carbohydr. Polym., 73, 4, 594–605, 2008.
37. Ehrig, K. and Alban, S., Sulfated galactofucan from the brown alga Saccharina latissima— Variability of yield, structural composition and bioactivity. Mar. Drugs, 13, 1, 76–101, 2015.
38. Skriptsova, A., Fucoidans of brown algae: Biosynthesis, localization, and physiological role in thallus. Russ. J. Mar. Biol., 41, 3, 145–156, 2015.
39. Morya, V., Kim, J., Kim, E.-K., Algal fucoidan: Structural and size-dependent bioactivities and their perspectives. Appl. Microbiol. Biotechnol., 93, 1, 71–82, 2012.
40. Gow, N.A., Latge, J.-P., Munro, C.A., The fungal cell wall: Structure, biosynthesis, and function, pp. 267–292, The Fungal Kingdom, United Kingdom, 2017.
41. Latge, J.P., The cell wall: A carbohydrate armour for the fungal cell. Mol. Microbiol., 66, 2, 279– 290, 2007.
42. Lecointe, K. et al., Polysaccharides Cell Wall Architecture of Mucorales. Front. Microbiol., 469, 10, 2019.
43. Kang, X. et al., Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat. Commun., 9, 1, 1–12, 2018.
44. Fesel, P.H. and Zuccaro, A., β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol., 90, 53–60, 2016.
45. Elsoud, M.M.A. and El Kady, E., Current trends in fungal biosynthesis of chitin and chitosan. Bull. Natl. Res. Cent., 43, 1, 1–12, 2019.
46. Baker, L.G. et al., Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell, 6, 5, 855–867, 2007.
47. Peter, M.G., Chitin and chitosan in fungi, p. 6, Biopolymers Online, Wiley, Golm Germany, 2005.
48. Dörr, T., Moynihan, P.J., Mayer, C., Bacterial Cell Wall Structure and Dynamics. Front. Microbiol., 10, 2051, 2019.
49. Mistou, M.-Y., Sutcliffe, I.C., van Sorge, N.M., Bacterial glycobiology: Rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol. Rev., 40, 4, 464–479, 2016.
50. Misra, S., Sharma, V., Srivastava, A.K., Bacterial polysaccharides: An overview. Polysaccharides: Bioactivity and Biotechnology, pp. 81–108, Springer Cham, Switzerland, 2014.
51. Wilkinson, J., The extracellular polysaccharides of bacteria. Bacteriol. Rev., 22, 1, 46, 1958.
52. Nwodo, U.U., Green, E., Okoh, A.I., Bacterial exopolysaccharides: Functionality and prospects. Int. J. Mol., 13, 11, 14002–14015, 2012.
53. Moscovici, M., Present and future medical applications of microbial exopolysaccharides. Front. Microbiol., 6, 1012, 2015.
54. Majee, S.B., Avlani, D., Biswas, G.R., Rheological behavior and pharmaceutical applications of bacterial exopolysaccharides. J. Appl. Pharm. Sci., 7, 224–232, 2017.
55. Schleifer, K.H. and Kandler, O., Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev., 36, 4, 407, 1972.
56. Vollmer, W., Blanot, D., De Pedro, M.A., Peptidoglycan structure and architecture. FEMS Microbiol. Rev., 32, 2, 149–167, 2008.
57. Luderitz, O. et al., Lipopolysaccharides of gram-negative bacteria, in: Current Topics in Membranes and Transport, pp. 79–151, Elsevier, Germany, 1982.
58. Matsuura, M., Structural modifications of bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Front. Immunol., 4, 109, 2013.
59. Caroff, M. and Karibian, D., Structure of bacterial lipopolysaccharides. Carbohydr. Res., 338, 23, 2431–2447, 2003.
60. Schultz, C., Lipopolysaccharide, structure and biological effects. Gen. Int. Med. Clin. Innov., 3, 1, 2–2, 2018.
61. Wang, X. and Quinn, P.J., Endotoxins: Lipopolysaccharides of gram-negative bacteria, in: Endotoxins: Structure, Function and Recognition, pp. 3–25, Springer, Dordrecht, 2010.
62. Lim, Y.Y. et al., Sulfated galactans from red seaweeds and their potential applications. P.J.S.R.R., 4, 2, 1–17, 2018.
63. Anbuchezhian, R., Karuppiah, V., Li, Z., Prospect of marine algae for production of industrially important chemicals, in: Algal Biorefinery: An Integrated Approach, pp. 195–217, Springer, Germany, 2015.
64. Patil, N.P. et al., Algal polysaccharides as therapeutic agents for atherosclerosis. Front. Cardiovasc. Med., 5, 153, 2018.
65. Esher, S.K. et al., Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition. PLoS Pathog., 14, 6, 1007126, 2018.
66. Martinez-Carmona, M., Gunko, Y.K., Vallet-Reg, M., Mesoporous silica materials as drug delivery: “The Nightmare” of bacterial infection. Pharmaceutics, 10, 4, 279, 2018.
*Corresponding author: asmanano@gmail.com