Читать книгу Handbook of Ecological and Ecosystem Engineering - Группа авторов - Страница 34

References

Оглавление

1 1 Shortall, O.K. (2013). “Marginal land” for energy crops: exploring definitions and embedded assumptions. Energ Policy 62: 19–27.

2 2 Tve, A.M., Robinson, D.A., and Lark, R.M. (2013). Gradual and anthropogenic soil change for fertility and carbon on marginal sandy soils. Geoderma 207–208: 35–48.

3 3 Nsanganwimana, F., Pourrut, B., Mench, M., and Douay, F. (2014). Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manage. 143: 123–134.

4 4 Sheoran, V., Sheoran, A.S., and Poonam, P. (2008). Remediation techniques for contaminated soils. Environ. Eng. Manag. J. 7: 379–387.

5 5 Changfeng, L., Kehai, Z., Wenqiang, Q. et al. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam. 28: 380–394.

6 6 Guo, J., Muhammad, H., Lv, X. et al. (2020). Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: a review. Chemosphere 246: 125823.

7 7 Qayyum, S., Khan, I., Meng, K. et al. (2020). A review on remediation technologies for heavy metals contaminated soil. Cent. Asian J. Environ. Sci. Technol. Innov. 1: 21–29.

8 8 Wan, X., Lei, M., and Chen, T. (2020). Review on remediation technologies for arsenic‐contaminated soil. Front. Environ. Sci. Eng. 14: 24.

9 9 Kang, S., Post, W., Wang, D. et al. (2013). Hierarchical marginal land assessment for land use planning. Land Use Policy 30: 106–113.

10 10 Terres, J.M., Hagyo, A., Wania, A. (2014). Scientific contribution on combining biophysical criteria underpinning the delineation of agricultural areas affected by specific constraints: Methodology and factsheets for plausiblecriteria combinations. In “JRC Scientific and Technical Reports”, Publications Office of the European Union, Brussels, Belgium.

11 11 Awet, T.T., Kohl, Y., Meier, F. et al. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ. Sci. Eur. 30: 11.

12 12 Rillig, M.C., Lehmann, A., Souza‐Machado, A.A., and Yang, G. (2019). Microplastic effects on plants. New Phytol. 223: 1066–1070.

13 13 Lewandowski, I. (2015). Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Secur. 6: 34–42.

14 14 Mehemood, M.A., Ibrahim, M., Rashid, U. et al. (2016). Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 9: 3–21.

15 15 Berisso, F.E., Schjønning, P., Keller, T. et al. (2012). Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil. Soil Tillage Res. 122: 42–51.

16 16 Ahmadi, S.H., Plauborg, F., Andersen, M.N. et al. (2011). Effects of irrigation strategies and soils on field grown potatoes: root distribution. Agric. Water Manag. 98: 1280–1290.

17 17 Colombi, T., Braun, S., Keller, T., and Walter, A. (2017). Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Sci. Total Environ. 574: 1283–1293.

18 18 Tang, J., Zhang, J., Ren, L. et al. (2019). Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution. J. Environ. Manag. 242: 121–130.

19 19 Amuno, S., Bedos, L., Kodzhahinchev, V. et al. (2020). Comparative study of arsenic toxicosis and ocular pathology in wild muskrats (Ondatra zibethicus). and red squirrels (Tamiasciurus hudsonicus). breeding in arsenic contaminated areas of Yellowknife, Northwest Territories (Canada). Chemosphere 248: 126011.

20 20 Amuno, S., Shekh, K., Kodzhahinchev, V., and Niyogi, S. (2020). Neuropathological changes in wild muskrats (Ondatra zibethicus). and red squirrels (Tamiasciurus hudsonicus). breeding in arsenic endemic areas of Yellowknife, Northwest Territories (Canada).: arsenic and cadmium accumulation in the brain and biomarkers of oxidative stress. Sci. Total Environ. 704: 135426.

21 21 Seneviratne, M., Rajakaruna, N., Rizwan, M. et al. (2019). Heavy metal‐induced oxidative stress on seed germination and seedling development: a critical review. Environ. Geochem. Health 41: 1813–1831.

22 22 Athar, R. and Ahmad, M. (2002). Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut. 138: 165–180.

23 23 Chibuike, G.U. and Obiora, S.C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014: 752708.

24 24 Hussain, S., Khaliq, A., Noor, M.A. et al. (2019). Metal toxicity and nitrogen metabolism in plants: An overview. In: Carbon and Nitrogen Cycling in Soil (eds. R. Datta, R. Meena, S. Pathan and M. Ceccherini), 221–248. Singapore: Springer.

25 25 Lemmel, F., Maunoury‐Danger, F., Fanesi, A. et al. (2019). Soil properties and multi‐pollution affect taxonomic and functional bacterial diversity in a range of French soils displaying an anthropisation gradient. Microb. Ecol. 77: 993–1013.

26 26 Wise, B.R., Roane, T.M., and Mosier, A.C. (2019). Community composition of nitrite reductase gene sequences in an acid mine drainage environment. Environ. Microbiol. 79: 562–575.

27 27 Pan, X., Zhang, S., Zhong, Q. et al. (2020). Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Sci. Total Environ. 715: 136904.

28 28 Jiang, R., Wang, M., Chen, W. et al. (2020). Changes in the integrated functional stability of microbial community under chemical stresses and the impacting factors in field soils. Ecol. Indic. 110: 105919.

29 29 Pandey, V.C., Bajpai, O., and Singh, N. (2016). Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54: 58–73.

30 30 McIntyre, T. (2003). Phytoremediation of heavy metals from soils. Adv. Biochem. Eng. Biotec. 78: 97–123.

31 31 Dale, V.H., Kline, K.L., Buford, M.A. et al. (2016). Incorporating bioenergy into sustainable designs. Renew. Sust. Energ. Rev. 56: 1158–1171.

32 32 Oliveira, J.S., Duarte, M.P., Christian, D.G. et al. (2001). Environmental aspects of Miscanthus production. In: Miscanthus for Energy and Fibre (eds. M.B. Jones and M. Walsh), 172–178. London, UK: James & James (Science Publishers). Ltd.

33 33 Fernando, A.L., Godovikova, V., and Oliveira, J.F.S. (2004). Miscanthus x giganteus: contribution to a sustainable agriculture of a future/present – oriented biomaterial. Mater. Sci. Forum 455–456: 437–441.

34 34 Fernando, A.L. (2013). Environmental aspects of Kenaf production and use. In: Kenaf: A Multi‐Purpose Crop for Several Industrial Applications, vol. 117 (eds. A. Monti and E. Alexopoulou) Green Energy and Technology, 83–104. London: Springer.

35 35 Alexopoulou, E., Cosentino, S.L., Danalatos, N. et al. (2013). New insights from the BIOKENAF project. In: Kenaf: A Multi‐Purpose Crop for Several Industrial Applications, vol. 117 (eds. A. Monti and E. Alexopoulou), Green Energy and Technology, 177–203. London: Springer.

36 36 Fernando, A.L., Costa, J., Barbosa, B. et al. (2018). Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean region. Biomass Bioenergy 111: 174–186.

37 37 Abdelsalam, I.M., Elshobary, M., Eladawy, M.M., and Nagah, M. (2019). Utilization of multi‐tasking non‐edible plants for phytoremediation and bioenergy source – a review. Phyton‐Int. J. Exp. Bot. 88: 69–90.

38 38 Chen, X., Kumari, D., Cao, C.J. et al. (2019). A review on remediation technologies for nickel contaminated soil. Hum. Ecol. Risk. Assess. 26: 571–585.

39 39 Kumar, V. and Kumar, P. (2019). A review on feasibility of phytoremediation technology for heavy metals removal. Arch. Agric. Environ. Sci. 4: 326–341.

40 40 Naila, A., Meerdink, G., Jayasena, V. et al. (2019). A review on global metal accumulators – mechanism, enhancement, commercial application, and research trend. Environ. Sci. Pollut. Res. 26: 26449–26471.

41 41 Barbosa, B., Costa, J., Boléo, S. et al. (2016). Phytoremediation of inorganic compounds. In: Electrokinetics Across Disciplines and Continents – New Strategies for Sustainable Development (eds. A.B. Ribeiro, E.P. Mateus and N. Couto), 373–400. Switzerland: Springer International Publishing.

42 42 Testa, R., Foderà, M., Di Trapani, A.M. et al. (2016). Giant reed as energy crop for Southern Italy: An economic feasibility study. Renew. Sust. Energ. Rev. 58: 558–564.

43 43 Bracco, S., Calicioglu, O., San Juan, M.G., and Flammini, A. (2018). Assessing the contribution of bioeconomy to the total economy: a review of national frameworks. Sustainability 10: 1698.

44 44 Stephanie, S., An, D.S., Margot, V. et al. (2019). Phytomining to re‐establish phosphorus‐poor soil conditions for nature restoration on former agricultural land. Plant Soil 440: 233–246.

45 45 Sidella, S., Barbosa, B., Costa, J. et al. (2016). Screening of giant reed clones for phytoremediation of lead contaminated soils. In: Perennial Biomass Crops for a Resource Constrained World (eds. S. Barth, D. Murphy‐Bokern, O. Kalinina, et al.), 191–197. Switzerland: Springer International Publishing.

46 46 Barbosa, B., Costa, J., and Fernando, A.L. (2018). Production of energy crops in heavy metals contaminated land: opportunities and risks. In: Land Allocation for Biomass (eds. R. Li and A. Monti), 83–102. Cham, Switzerland: Springer.

47 47 Porter, J.R. and Semenov, M.A. (2005). Crop responses to climatic variation. Philos. Trans. R. Soc. B 360: 2021–2035.

48 48 Hasanuzzaman, M., Nahar, K., and Fujita, M. (2013). Extreme temperatures, oxidative stress and antioxidant defense in plants. In: Abiotic Stress – Plant Responses and Applications in Agriculture (eds. K. Vahdati and C. Leslie), 169–205. London, UK: IntechOpen Limited.

49 49 Awasthi, R., Bhandari, K., and Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 3: 1–24.

50 50 Yordanova, R. and Popova, L. (2007). Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen. Appl. Plant Physiol. 33: 155–170.

51 51 Allen, D.J. and Ort, D.R. (2001). Impacts of chilling temperatures on photosynthesis in warm‐climate plants. Trends Plant Sci. 6: 36–42.

52 52 Fahimirad, S., Karimzadeh, G., and Ghanati, F. (2013). Cold‐induced changes of antioxidant enzymes activity and lipid peroxidation in two canola (Brassica napus L.). Cultivars. J. Plant Physiol. Breed. 3: 1–11.

53 53 Wang, W.B., Kim, Y.H., Lee, H.S. et al. (2009). Differential antioxidation activities in two alfalfa cultivars under chilling stress. Plant Biotechnol. Rep. 3: 301–307.

54 54 Posmyk, M.M., Corbineau, F., Vinel, D. et al. (2001). Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiol. Plant. 111: 473–482.

55 55 Janská, A., Maršík, P., Zelenková, S., and Ovesná, J. (2010). Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol. 12: 395–405.

56 56 Chen, T.H.H. and Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13: 499–505.

57 57 Larsen, S., Jaiswal, D., Bentsen, N.S. et al. (2016). Comparing predicted yield and yield stability of willow and Miscanthus across Denmark. Glob. Change Biol. Bioenergy 6: 1061–1070.

58 58 McCalmont, J.P., Hastings, A., McNamara, N.P. et al. (2017). Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Glob. Change Biol. Bioenergy 9: 489–507.

59 59 Kandel, T.P., Hastings, A., Jørgensen, U., and Olesen, J.E. (2016). Simulation of biomass yield of regular and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of Europe. Ind. Crop. Prod. 86: 329–333.

60 60 El Bassam, N. (2010). Handbook of Bioenergy Crops – a Complete Reference to Species, Development and Applications. London, United Kingdom: Earthscan, Ltd.

61 61 Parenti, A., Lambertini, C., and Monti, A. (2018). Areas with natural constraints to agriculture: possibilities and limitations for the cultivation of Switchgrass (Panicum virgatum L.) and Giant Reed (Arundo donax L.) in Europe. In: Land Allocation for Biomass (eds. R. Li and A. Monti), 39–63. Cham, Switzerland: Springer.

62 62 Jensen, A.B. and Eller, F. (2020). Hybrid Napier grass (Pennisetum purpureum Schumach × P. americanum (L.). Leeke cv. Pakchong 1). and Giant reed (Arundo donax L.). as candidate species in temperate European paludiculture: growth and gas exchange responses to suboptimal temperatures. Aquat. Bot. 160: 103165.

63 63 Poudel, H.P., Sanciangco, M.D., Kaeppler, S.M. et al. (2019). Quantitative trait loci for freezing tolerance in a lowland x upland switchgrass population. Front. Plant Sci. 10: 372.

64 64 Paschalidou, A., Tsatiris, M., and Kitikidou, K. (2019). Perennial vs annual energy crops‐SWOT analysis (case study: Greece). Int. Refereed J. Eng. Sci. 7: 1–24.

65 65 Barbosa, B., Costa, J., Fernando, A.L., and Papazoglou, E.G. (2015). Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crop. Prod. 68: 17–23.

66 66 Collins, D.B.G. and Bras, R.L. (2007). Plant rooting strategies in water‐limited ecosystems. Water Resour. Res. 43: 1–10.

67 67 Pietola, L., Horn, R., and Yli‐Halla, M. (2005). Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil Tillage Res. 82: 99–108.

68 68 Liu, B., Zhu, C., Tang, C.S. et al. (2020). Bio‐remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng. Geol. 264: 105389.

69 69 Butt, W.A., Mir, B.A., and Jha, J.N. (2016). Strength behavior of clayey soil reinforced with human hair as a natural fibre. Geotech. Geol. Eng. 34: 411–417.

70 70 Bartzen, B.T., Hoelscher, G.L., Ribeiro, L.L.O., and Seidel, E.P. (2019). How the soil resistance to penetration affects the development of agricultural crops? J. Exp. Agric. Int. 30: 1–17.

71 71 Calusi, B., Tramacere, F., Gualtieri, S. et al. (2020). Plant root penetration and growth as a mechanical inclusion problem. Int. J. Non Linear Mech. 120: 103344.

72 72 Grammelis, P., Malliopoulou, A., Basinas, P., and Danalatos, N.G. (2008). Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int. J. Mol. Sci. 9: 1241–1258.

73 73 Lu, J., Dijkstra, F.A., Wang, P., and Cheng, W. (2019). Roots of non‐woody perennials accelerated long‐term soil organic matter decomposition through biological and physical mechanisms. Soil Biol. Biochem. 134: 42–53.

74 74 Guzman, J.G., Ussiri, D.A.N., and Lal, R. (2019). Soil physical properties following conversion of a reclaimed minesoil to bioenergy crop production. Catena 176: 289–295.

75 75 Alexopoulou, E., Zanetti, F., Papazoglou, E.G. et al. (2017). Long‐term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Ind. Crop. Prod. 107: 446–452.

76 76 Fernando, A.L., Boléo, S., Barbosa, B. et al. (2015). Perennial grass production opportunities on marginal Mediterranean land. Bioenergy Res. 8: 1523–1537.

77 77 O'Brien, S.L. and Jastrow, J.D. (2013). Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biol. Biochem. 61: 1–13.

78 78 Zhong, X., Li, J., Li, X. et al. (2017). Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma 285: 323–332.

79 79 Kv, U., Km, R., and Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. J. Pharmacogn. Phytochem. 8: 1256–1267.

80 80 Niu, X. and Duiker, S.W. (2006). Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U.S. For. Ecol. Manag. 223: 415–427.

81 81 Ussiri, D.A.N., Guzman, J.G., Lal, R., and Somireddy, U. (2019). Bioenergy crop production on reclaimed mine land in the North Appalachian region, USA. Biomass Bioenergy 125: 188–195.

82 82 Gao, B., Zhang, X., Tian, C. et al. (2019). Effects of amendments and aided phytostabilization of an energy crop on the metal availability and leaching in mine tailings using a pot test. Environ. Sci. Pollut. Res. 27: 2745–2759.

83 83 Hamidpour, M., Nemati, H., Abbaszadeh‐Dahaji, P., and Roosta, H.R. (2019). Effects of plant growth‐promoting bacteria on EDTA‐assisted phytostabilization of heavy metals in a contaminated calcareous soil. Environ. Geochem. Health: 3. https://doi.org/10.1007/s10653‐019‐00422‐3.

84 84 Von Cossel, M., Lewandowski, I., Elbersen, B. et al. (2019). Marginal agricultural land low‐input systems for biomass production. Energies 12: 3123.

85 85 Von Cossel, M., Wagner, M., Lask, J. et al. (2019). Prospects of bioenergy cropping systems for a more social‐ecologically sound bioeconomy. Agronomy 9: 605.

86 86 Cordeiro, C.F.S. and Echer, F.R. (2019). Interactive effects of nitrogen‐fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci. Rep. 9: 1–11.

87 87 Yang, L., Yang, Y., Chen, Z. et al. (2014). Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco‐engineering. Ecol. Eng. 62: 27–32.

88 88 Khodadadi‐Dehkordi, D. (2016). The effects of superabsorbent polymers on soils and plants. Pertanika J. Trop. Agric. Sci. 39: 267–298.

89 89 Cosentino, S.L., Copani, V., Scalici, G. et al. (2015). Soil erosion mitigation by perennial species under Mediterranean environment. Bioenergy Res. 8: 1538–1547.

90 90 Singh, A.K. (2010). Bioengineering techniques of slope stabilization and landslide mitigation. Disaster Prev. Manag. 19: 384–397.

91 91 Cantalice, J.R.B., Nunes, E.O.S., Cavalcante, D.M. et al. (2019). Vegetative‐hydraulic parameters generated by agricultural crops for laminar flows under a semi‐arid environment of Pernambuco, Brazil. Ecol. Indic. 106: 105496.

92 92 Buxton, D.R. (1996). Quality‐related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Technol. 59: 37–49.

93 93 Deléglise, C., Meisser, M., Mosimann, E. et al. (2015). Drought‐induced shifts in plants traits, yields and nutritive value under realistic grazing and mowing managements in a mountain grassland. Agric. Ecosyst. Environ. 213: 94–104.

94 94 Scordia, D., Testa, G., Cosentino, S.L. et al. (2015). Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. Ssp. aegyptiacum (willd.). hackel in semi‐arid Mediterranean environment. Ital. J. Agron. 10: 185–191.

95 95 Wilmowicz, E., Kućko, A., Burchardt, S., and Przywieczerski, T. (2019). Molecular and hormonal aspects of drought‐triggered flower shedding in yellow lupine. Int. J. Mol. Sci. 20: 3731.

96 96 Blum, A., Johnson, J.W., Ramseur, E.L., and Tollner, E.W. (1991). The effect of a drying top soil and a possible non‐hydraulic root signal on wheat growth and yield. J. Exp. Bot. 42: 1225–1231.

97 97 Arkhipova, T.N., Prinsen, E., Veselov, S.U. et al. (2007). Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292: 305–315.

98 98 Scordia, D. and Cosentino, S.L. (2019). Perennial energy grasses: resilient crops in a changing European agriculture. Agriculture 9: 169.

99 99 Zegada‐Lizarazu, W., Salvi, S., and Monti, A. (2020). Assessment of mutagenized giant reed clones for yield, drought resistance and biomass quality. Biomass Bioenergy 134: 105501.

100 100 Haworth, M., Marino, G., Riggi, E. et al. (2019). The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season. Ann. Bot. 124: 567–579.

101 101 Cosentino, S.L., Scordia, D., Sanzone, E. et al. (2014). Response of giant reed (Arundo donax L.). to nitrogen fertilization and soil water availability in semi‐arid Mediterranean environment. Eur. J. Agron. 60: 22–32.

102 102 Zegada‐Lizarazu, W. and Monti, A. (2019). Deep root growth, ABA adjustments and root water uptake response to soil water deficit in giant reed. Ann. Bot. 124: 605–615.

103 103 Cosentino, S.L., Copani, V., Testa, G., and Scordia, D. (2015). Saccharum spontaneum L. ssp. aegyptiacum (Willd.). Hack. a potential perennial grass for biomass production in marginal land in semi‐arid Mediterranean environment. Ind. Crop. Prod. 75: 93–102.

104 104 Scordia, D., Testa, G., Copani, V. et al. (2017). Lignocellulosic biomass production of Mediterranean wild accessions (Oryzopsis miliacea, Cymbopogon hirtus, Sorghum halepense and Saccharum spontaneum) in a semi‐arid environment. Field Crops Res. 214: 56–65.

105 105 Dąbrowski, P., Baczewska‐Dąbrowska, A.H., Kalaji, H.M. et al. (2019). Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. Sensors 19: 2736.

106 106 Taylor, G., Donnison, I.S., Murphy‐Bokern, D. et al. (2019). Sustainable bioenergy for climate mitigation: developing drought‐tolerant trees and grasses. Ann. Bot. 124: 513–520.

107 107 Zhang, Y., Chen, Y., Lu, H. et al. (2016). Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging. Field Crops Res. 194: 83–93.

108 108 Muhammad, A.A. (2012). Waterlogging stress in plants: a review. Afr. J. Agric. Res. 7: 1976–1981.

109 109 Arguello, M.N., Mason, R.E., Roberts, T.L. et al. (2016). Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield components. Field Crops Res. 194: 57–64.

110 110 Colmer, T.D. and Flowers, T.J. (2008). Flooding tolerance in halophytes. New Phytol. 179: 964–974.

111 111 McDonald, M.P., Galwey, N.W., and Colmer, T.D. (2002). Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ. 25: 441–451.

112 112 Akhtar, I. and Nazir, N. (2013). Effect of waterlogging and drought stress in plants. Int. J. Water Res. Environ. Sci. 2: 34–40.

113 113 Kadam, S., Abril, A., Dhanapal, A.P. et al. (2017). Characterization and regulation of aquaporin genes of Sorghum [Sorghum bicolor (L.). Moench] in response to waterlogging stress. Front. Plant Sci. 8: 1–14.

114 114 Liu, M. and Jiang, Y. (2015). Genotypic variation in growth and metabolic responses of perennial ryegrass exposed to short‐term waterlogging and submergence stress. Plant Physiol. Biochem. 95: 57–64.

115 115 Pompeiano, A., Reyes, T.H., Moles, T.M. et al. (2019). Photosynthetic and growth responses of Arundo donax L. plantlets under different oxygen deficiency stresses and reoxygenation. Front. Plant Sci. 10: 408.

116 116 Quinn, L.D., Straker, K.C., Guo, J. et al. (2015). Stress‐tolerant feedstocks for sustainable bioenergy production on marginal land. Bioenergy Res. 8: 1081–1100.

117 117 Martins, A.P., Denardin, L.G.O., Tiecher, T. et al. (2020). Nine‐year impact of grazing management on soil acidity and aluminum speciation and fractionation in a long‐term no‐till integrated crop‐livestock system in the subtropics. Geoderma 359: 113986.

118 118 Niu, H., Leng, Y., Ran, S. et al. (2020). Toxicity of soil labile aluminum fractions and aluminum species in soil water extracts on the rhizosphere bacterial community of tall fescue. Ecotoxicol. Environ. Saf. 187: 109828.

119 119 Zhao, X.Q., Chen, R.F., and Shen, R.F. (2014). Coadaptation of plants to multiple stresses in acidic soils. Soil Sci. 179: 503–513.

120 120 Ashraf, S., Dixit, S., Ramteke, P.W., and Rizvi, A.Z. (2019). Interactive role of brassinosteroids and calcium ameliorates in response to the aluminium toxicity in plants. Int. J. Trend Sci. Res. Dev. 3: 183–203.

121 121 Aguilera, P., Borie, F., Seguel, A., and Cornejo, P. (2019). How does the use of non‐host plants affect arbuscular mycorrhizal communities and levels and nature of glomalin in crop rotation systems established in acid andisols? In: Mycorrhizal Fungi in South America (eds. M. Pagano and M. Lugo), Fungal Biology, 147–158. Cham, Switzerland: Springer.

122 122 Zheng, S.J. (2010). Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann. Bot. 106: 183–184.

123 123 Kuswantoro, H. and Zen, S. (2013). Performance of acid‐tolerant soybean promising lines in two planting seasons. Int. J. Biol. 5: 49–56.

124 124 Konaka, T., Ishimoto, Y., Yamada, M. et al. (2019). Tolerance evaluation of Jatropha curcas and Acacia burkei to acidic and copper/nickel‐contaminated soil. J. Environ. Biol. 40: 1109–1114.

125 125 Awa, S.H. and Hadibarata, T. (2020). Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut. 231: 1–15.

126 126 Ye, S., Zeng, G., Wu, H. et al. (2017). Biological technologies for the remediation of co‐contaminated soil. Crit. Rev. Biotechnol. 37: 1062–1076.

127 127 Ma, J.W., Wang, F.Y., Huang, Z.H., and Wang, H. (2010). Simultaneous removal of 2,4‐dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. J. Hazard. Mater. 176: 715–720.

128 128 Ye, S., Zeng, G., Wu, H. et al. (2017). Co‐occurrence and interactions of pollutants, and their impacts on soil remediation – a review. Crit. Rev. Environ. Sci. Technol. 47: 1528–1553.

129 129 Ojuederie, O.B. and Babalola, O.O. (2017). Microbial and plant‐assisted bioremediation of heavy metal polluted environments: a review. Int. J. Environ. Res. Public Health 14: 1504.

130 130 Villa, R.D., Trovó, A.G., and Nogueira, R.F.P. (2008). Environmental implications of soil remediation using the Fenton process. Chemosphere 71: 43–50.

131 131 Akhtar, F.Z., Archana, K.M., Krishnaswamy, V.G., and Rajagopal, R. (2020). Remediation of heavy metals (Cr, Zn). Using physical, chemical and biological methods: a novel approach. SN Appl. Sci. 2: 267.

132 132 Cheng, M., Zeng, G., Huang, D. et al. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs). For remediation of soils contaminated with organic compounds: a review. Chem. Eng. J. 284: 582–598.

133 133 Yao, Z., Li, J., Xie, H., and Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ. Sci. 16: 722–729.

134 134 Sun, X., Meng, J., Huo, S. et al. (2020). Remediation of heavy metal pollution in soil by microbial immobilization with carbon microspheres. Int. J. Environ. Sci. Dev. 11: 43–47.

135 135 Yadav, K.K., Singh, J.K., Gupta, N., and Kumar, V. (2017). A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J. Mater. Environ. Sci. 8: 740–757.

136 136 Pauwels, M., Willems, G., Roosens, N. et al. (2008). Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal‐polluted sites: implications for phytoremediation. Mol. Ecol. 17: 109–119.

137 137 Coppa, E., Astolfi, S., Beni, C. et al. (2020). Evaluating the potential use of Cu‐contaminated soils for giant reed (Arundo donax, L.). cultivation as a biomass crop. Environ. Sci. Pollut. Res. 27: 8662–8672.

138 138 Manoj, S.R., Karthik, C., Kadirvelu, K. et al. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J. Environ. Manag. 254: 109779.

139 139 Patra, D.K., Pradhan, C., and Patra, H.K. (2020). Toxic metal decontamination by phytoremediation approach: concept, challenges, opportunities and future perspectives. Environ. Technol. Innov. 18: 100672.

140 140 Gomes, H.I. (2012). Phytoremediation for bioenergy: challenges and opportunities. Environ. Technol. Rev. 1: 59–66.

141 141 Yang, Y., Zhou, X., Tie, B. et al. (2017). Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere 188: 148–156.

142 142 Zhou, J., Chen, L.H., Peng, L. et al. (2020). Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use. Chemosphere 247: 125856.

143 143 Papazoglou, E.G. and Fernando, A.L. (2017). Preliminary studies on the growth, tolerance and phytoremediation ability of sugarbeet (Beta vulgaris L.). grown on heavy metal contaminated soil. Ind. Crop. Prod. 107: 463–471.

144 144 Parrish, D.J. and Fike, J.H. (2005). The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci. 24: 423–459.

145 145 Ruiz‐Olivares, A., Carrillo‐González, R., González‐Chávez, M.C.A., and Soto‐Hernández, R.M. (2013). Potential of castor bean (Ricinus communis L.). for phytoremediation of mine tailings and oil production. J. Environ. Manag. 114: 316–323.

146 146 Bauddh, K., Singh, K., Singh, B., and Singh, R.P. (2015). Ricinus communis: a robust plant for bio‐energy and phytoremediation of toxic metals from contaminated soil. Ecol. Eng. 84: 640–652.

147 147 Pidlisnyuk, V., Stefanovska, T., Lewis, E.E. et al. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant Sci. 33: 1–19.

148 148 Barbosa, B. and Fernando, A.L. (2018). Aided phytostabilization of mine waste. In: Bio‐Geotechnologies for Mine Site Rehabilitation (eds. M.N.V. Prasad, P.J.C. Favas and S.K. Maiti), 147–157. UK: Elsevier Inc.

149 149 Barbosa, B., Boléo, S., Sidella, S. et al. (2015). Phytoremediation of heavy metal‐contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res. 8: 1500–1511.

150 150 Shaheen, S., Ahmad, R., Mahmood, Q. et al. (2019). Gene expression and biochemical response of giant reed under Ni and Cu stress. Int. J. Phytoremediation 21: 1474–1485.

151 151 Iram, S., Basri, R., Ahmad, K.S., and Jaffri, S.B. (2019). Mycological assisted phytoremediation enhancement of bioenergy crops Zea mays and Helianthus annuus in heavy metal contaminated lithospheric zone. Soil Sediment Contam. 28: 411–430.

152 152 Rengasamy, P. (2006). World salinization with emphasis on Australia. J. Exp. Bot. 57: 1017–1023.

153 153 Bui, E.N. (2013). Soil salinity: a neglected factor in plant ecology and biogeography. J. Arid Environ. 92: 14–25.

154 154 Dahlhaus, P.G., Cox, J.W., Simmons, C.T., and Smitt, C.M. (2008). Beyond hydrogeologic evidence: challenging the current assumptions about salinity processes in the Corangamite region, Australia. Hydrogeol. J. 16: 1283.

155 155 Nackley, L.L. and Kim, S.H. (2015). A salt on the bioenergy and biological invasions debate: salinity tolerance of the invasive biomass feedstock Arundo donax. Glob. Change Biol. Bioenergy 7: 752–762.

156 156 Sánchez, E., Scordia, D., Lino, G. et al. (2015). Salinity and water stress effects on biomass production in different Arundo donax L. clones. Bioenergy Res. 8: 1461–1479.

157 157 Romero‐Munar, A., Baraza, E., Gulías, J., and Cabot, C. (2019). Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax l.) plants grown under low phosphorus by reducing leaf NA+ concentration and improving phosphorus use efficiency. Front. Plant Sci. 10: 843.

158 158 Stavridou, E., Hastings, A., Webster, R.J., and Robson, P. (2017). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. Glob. Change Biol. Bioenergy 9: 92–104.

159 159 Burnham, M., Eaton, W., Selfa, T. et al. (2017). The politics of imaginaries and bioenergy sub‐niches in the emerging Northeast U.S. bioenergy economy. Geoforum 82: 66–76.

160 160 Dickinson, N.M., Baker, A.J.M., Doronila, A. et al. (2009). Phytoremediation of inorganics: realism and synergies. Int. J. Phytoremediation 11: 97–114.

161 161 Fernando, A.L., Rettenmaier, N., Soldatos, P., and Panoutsou, C. (2018). Sustainability of perennial crops production for bioenergy and bioproducts. In: Perennial Grasses for Bioenergy and Bioproducts (ed. E. Alexopoulou), 245–283. UK: Academic Press, Elsevier Inc.

162 162 Pires, J.R.A., Souza, V.L., and Fernando, A.L. (2019). Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects. Ind. Crop. Prod. 140: 111642.

163 163 Fernando, A.L., Barbosa, B., Costa, J., and Papazoglou, E.G. (2016). Giant reed (Arundo donax L.).: a multipurpose crop bridging phytoremediation with sustainable bio‐economy. In: Bioremediation and Bioeconomy (ed. M.N.V. Prasad), 77–95. UK: Elsevier Inc.

164 164 Fernando, A.L., Duarte, M.P., Vatsanidou, A., and Alexopoulou, E. (2015). Environmental aspects of fiber crops cultivation and use. Ind. Crop. Prod. 68: 105–115.

165 165 Pascoal, A., Quirantes‐Piné, R., Fernando, A.L. et al. (2015). Phenolic composition and antioxidant activity of kenaf leaves. Ind. Crop. Prod. 78: 116–123.

166 166 Souza, V.G.L., Fernando, A.L., Pires, J.R.A. et al. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crop. Prod. 107: 565–572.

167 167 Souza, V.G.L., Rodrigues, P.F., Duarte, M.P., and Fernando, A.L. (2018). Antioxidant migration studies in chitosan films incorporated with plant extracts. J. Renew. Mater. 6: 548–558.

168 168 Pires, J.R.A., Souza, V.G.L., and Fernando, A.L. (2018). Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. Food Packag. Shelf Life 17: 142–149.

169 169 Souza, V.G.L., Rodrigues, C., Ferreira, L. et al. (2019). in vitro; bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crop. Prod. 140: 111563.

170 170 Zanetti, F., Monti, A., and Berti, M.T. (2013). Challenges and opportunities for new industrial oilseed crops in EU‐27: a review. Ind. Crop. Prod. 50: 580–595.

171 171 Righini, D., Zanetti, F., Martínez‐Force, E. et al. (2019). Shifting sowing of camelina from spring to autumn enhances the oil quality for bio‐based applications in response to temperature and seed carbon stock. Ind. Crop. Prod. 137: 66–73.

172 172 Hemida, A. and Abdelrahman, M. (2020). Monitoring separation tendency of partial asphalt replacement by crumb rubber modifier and guayule resin. Constr. Build. Mater. 251: 118967.

173 173 Ren, X. and Cornish, K. (2019). Eggshell improves dynamic properties of durable guayule rubber composites co‐reinforced with silanized silica. Ind. Crop. Prod. 138: 111440.

Handbook of Ecological and Ecosystem Engineering

Подняться наверх