Читать книгу Self-Healing Smart Materials - Группа авторов - Страница 18

References

Оглавление

1. Wool, R.P., Material response and reversible cracks in viscoelastic polymers. Polym. Eng. Sci., 18, 14, 1057–1061, 1978.

2. Jud, K., Kausch, H.H., Williams, J.G., Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci., 16, 1, 204–210, 1981.

3. Dry, C.M. and Sottos, N.R., Passive smart self-repair in polymer matrix composite materials. Proc. SPIE 1916, Smart Structures and Materials 1993: Smart Materials, 438–444, https://doi.org/10.1117/12.148501

4. Dry, C.M. and McMillan, W., Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fibers. Proc. SPIE 2718, Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, 448–451, 1996.

5. Pascault, J.-P., Sautereau, H., Verdu, J., Williams, R.J.J., Thermosetting Polymers, Marcel Dekker, New York, 2002.

6. Brazel, C.S. and Rosen, S.L., Fundamental principles of polymeric materials, Wiley, Hoboken, New Jersey, 2012.

7. Francis, R. (Ed.), Recycling of Polymers: Methods, Characterization and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016.

8. World Economic Forum’s Global Agenda Council on Emerging Technologies, The top 10 emerging technologies for 2013, https://www.weforum.org/agenda/2013/02/top-10-emerging-technologies-for-2013/, 2013.

9. World Economic Forum’s Meta-Council on Emerging Technologies, The top 10 emerging technologies for 2015, https://www.weforum.org/agenda/2015/03/top-10-emerging-technologies-of-2015-2/, 2015.

10. Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R., White, S.R., Self-Healing Polymers and Composites. Annu. Rev. Mater. Res., 40, 1, 179–211, 2010.

11. Billiet, S., Hillewaere, X.K.D., Teixeira, R.F.A., Du Prez, F.E., Chemistry of Crosslinking Processes for Self-Healing Polymers. Macromol. Rapid Commun., 34, 4, 290–309, 2013.

12. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S., Autonomic healing of polymer composites. Nature, 409, 6822, 794–797, 2001.

13. Kessler, M.R., Sottos, N.R., White, S.R., Self-healing structural composite materials. Compos. Part Appl. Sci. Manuf., 34, 8, 743–753, 2003.

14. Wu, D.Y., Meure, S., Solomon, D., Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci., 33, 5, 479–522, 2008.

15. Luo, X., Ou, R., Eberly, D.E., Singhal, A., Viratyaporn, W., Mather, P.T., A Thermoplastic/Thermoset Blend Exhibiting Thermal Mending and Reversible Adhesion. ACS Appl. Mater. Interfaces, 1, 3, 612–620, 2009.

16. Hayes, S.A., Jones, F.R., Marshiya, K., Zhang, W., A self-healing thermosetting composite material. Compos. Part Appl. Sci. Manuf., 38, 4, 1116–1120, 2007.

17. Liu, Y.-L. and Chuo, T.-W., Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem., 4, 7, 2194, 2013.

18. Denissen, W., Winne, J.M., Du Prez, F.E., Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci., 7, 1, 30–38, 2016.

19. Roy, N., Bruchmann, B., Lehn, J.-M., DYNAMERS: Dynamic polymers as self-healing materials. Chem. Soc. Rev., 44, 11, 3786–3807, 2015.

20. Ishida, K. and Yoshie, N., Synthesis of Readily Recyclable Biobased Plastics by Diels–Alder Reaction. Macromol. Biosci., 8, 10, 916–922, 2008.

21. Capelot, M., Montarnal, D., Tournilhac, F., Leibler, L., Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets. J. Am. Chem. Soc., 134, 18, 7664–7667, 2012.

22. Mauldin, T.C. and Kessler, M.R., Self-healing polymers and composites. Int. Mater. Rev., 55, 6, 317–346, 2010.

23. Hansen, C.J., Wu, W., Toohey, K.S., Sottos, N.R., White, S.R., Lewis, J.A., Self-Healing Materials with Interpenetrating Microvascular Networks. Adv. Mater., 21, 41, 4143–4147, 2009.

24. Brown, E.N., Sottos, N.R., White, S.R., Fracture testing of a self-healing polymer composite. Exp. Mech., 42, 4, 372–379, 2002.

25. Patel, A.J., Sottos, N.R., Wetzel, E.D., White, S.R., Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos. Part Appl. Sci. Manuf., 41, 3, 360–368, 2010.

26. Rule, J.D., Sottos, N.R., White, S.R., Effect of microcapsule size on the performance of self-healing polymers. Polymer, 48, 12, 3520–3529, 2007.

27. Cho, S.H., Andersson, H.M., White, S.R., Sottos, N.R., Braun, P.V., Polydimethylsiloxane-Based Self-Healing Materials. Adv. Mater., 18, 8, 997–1000, 2006.

28. Keller, M.W., White, S.R., Sottos, N.R., A Self-Healing Poly(Dimethyl Siloxane) Elastomer. Adv. Funct. Mater., 17, 14, 2399–2404, 2007.

29. Keller, M.W. and Sottos, N.R., Mechanical Properties of Microcapsules Used in a Self-Healing Polymer. Exp. Mech., 46, 6, 725–733, 2006.

30. Kumudinie, C. and Mark, J.E., Tearing energies for in-situ reinforced poly(dimethylsiloxane) networks. Mater. Sci. Eng. C, 11, 1, 61–66, 2000.

31. Yuan, Q.W. and Mark, J.E., Reinforcement of poly(dimethylsiloxane) networks by blended and in-situ generated silica fillers having various sizes, size distributions, and modified surfaces. Macromol. Chem. Phys., 200, 206–220, 1999.

32. Kim, D.-M., Cho, Y.-J., Choi, J.-Y., Kim, B.-J., Jin, S.-W., Chung, C.-M., Low-Temperature Self-Healing of a Microcapsule-Type Protective Coating. Materials, 10, 9, 1079, 2017.

33. Yin, T., Rong, M., Zhang, M., Yang, G., Self-healing epoxy composites—Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos. Sci. Technol., 67, 2, 201–212, 2007.

34. Yin, T., Rong, M.Z., Zhang, M.Q., Self-Healing of Cracks in Epoxy Composites. Adv. Mater. Res., 47–50, 282–285, 2008.

35. Pascu, O., Garcia-Valls, R., Giamberini, M., Interfacial polymerization of an epoxy resin and carboxylic acids for the synthesis of microcapsules. Polym. Int., 57, 8, 995–1006, 2008.

36. Guadagno, L., Raimondo, M., Naddeo, C., Longo, P., Mariconda, A., Binder, W.H., Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater. Struct., 23, 4, 045001, 2014.

37. Guadagno, L., Raimondo, M., Vietri, U., Naddeo, C., Stojanovic, A., Sorrentino, A., Binder, W.H., Evaluation of the Mechanical Properties of Microcapsule-Based Self-Healing Composites. Int. J. Aerosp. Eng., 2016, 1–10, 2016.

38. Lee Hia, I., Chan, E.-S., Chai, S.-P., Pasbakhsh, P., A novel repeated self-healing epoxy composite with alginate multicore microcapsules. J. Mater. Chem. A, 6, 18, 8470–8478, 2018.

39. Yang, J., Keller, M.W., Moore, J.S., White, S.R., Sottos, N.R., Microencapsulation of Isocyanates for Self-Healing Polymers. Macromolecules, 41, 24, 9650–9655, 2008.

40. Huang, M. and Yang, J., Facile microencapsulation of HDI for self-healing anticorrosion coatings. J. Mater. Chem., 21, 30, 11123, 2011.

41. He, Z., Jiang, S., An, N., Li, X., Li, Q., Wang, J., Zhao, Y., Kang, M., Self-healing isocyanate microcapsules for efficient restoration of fracture damage of polyurethane and epoxy resins. J. Mater. Sci., 54, 11, 8262–8275, 2019.

42. Brey Gil, C.S., Patricio, P.S., Oliveira, L.C., Oréfice, R.L., Improved self-healing properties of collagen using polyurethane microcapsules containing reactive diisocyanate: Improved self-healing properties of collagen. Polym. Int., 65, 6, 721–727, 2016.

43. Hillewaere, X.K.D. and Du Prez, F.E., Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci., 49–50, 121–153, 2015.

44. Di Credico, B., Levi, M., Turri, S., An efficient method for the output of new self-repairing materials through a reactive isocyanate encapsulation. Eur. Polym. J., 49, 9, 2467–2476, 2013.

45. Wang, W., Xu, L., Li, X., Lin, Z., Yang, Y., An, E., Self-healing mechanisms of water triggered smart coating in seawater. J. Mater. Chem. A, 2, 6, 1914–1921, 2014.

46. Song, Y.-K., Jo, Y.-H., Lim, Y.-J., Cho, S.-Y., Yu, H.-C., Ryu, B.-C., Lee, S.-I., Chung, C.-M., Sunlight-Induced Self-Healing of a Microcapsule-Type Protective Coating. ACS Appl. Mater. Interfaces, 5, 4, 1378–1384, 2013.

47. Khalaj Asadi, A., Ebrahimi, M., Mohseni, M., Microencapsulation of a sunlight-curable silicon-based resin in the presence of polyvinylpyrrolidone. Pigm. Resin Technol., 47, 3, 272–278, 2018.

48. Gao, L., He, J., Hu, J., Wang, C., Photoresponsive Self-Healing Polymer Composite with Photoabsorbing Hybrid Microcapsules. ACS Appl. Mater. Interfaces, 7, 45, 25546–25552, 2015.

49. Zhu, Y., Cao, K., Chen, M., Wu, L., Synthesis of UV-Responsive Self-Healing Microcapsules and Their Potential Application in Aerospace Coatings. ACS Appl. Mater. Interfaces, 11, 36, 33314–33322, 2019.

50. Samadzadeh, M., Boura, S.H., Peikari, M., Kasiriha, S.M., Ashrafi, A., A review on self-healing coatings based on micro/nanocapsules. Prog. Org. Coat., 68, 3, 159–164, 2010.

51. Tripathi, M., Rahamtullah, Kumar, D., Rajagopal, C., Kumar Roy, P., Influence of microcapsule shell material on the mechanical behavior of epoxy composites for self-healing applications. J. Appl. Polym. Sci., 131, 15, 40572, 2014.

52. Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J.B., Hirschberg, J.H.K.K., Lange, R.F.M., Lowe, J.K.L., Meijer, E.W., Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science, 278, 5343, 1601–1604, 1997.

53. Bosman, A.W., Sijbesma, R.P., Meijer, E.W., Supramolecular polymers at work. Mater. Today, 7, 4, 34–39, 2004.

54. Deflorian, F., Rossi, S., Scrinzi, E., Self-healing supramolecular polyurethane coatings: Preliminary study of the corrosion protective properties. Corros. Eng. Sci. Technol., 48, 2, 147–154, 2013.

55. Wang, X., Li, Y., Qian, Y., Qi, H., Li, J., Sun, J., Mechanically Robust Atomic Oxygen-Resistant Coatings Capable of Autonomously Healing Damage in Low Earth Orbit Space Environment. Adv. Mater., 30, 36, 1803854, 2018.

56. Heinzmann, C., Lamparth, I., Rist, K., Moszner, N., Fiore, G.L., Weder, C., Supramolecular Polymer Networks Made by Solvent-Free Copolymerization of a Liquid 2-Ureido-4[1 H ]-pyrimidinone Methacrylamide. Macromolecules, 48, 22, 8128–8136, 2015.

57. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C., Leibler, L., Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 451, 7181, 977–980, 2008.

58. Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J.-L., Leibler, L., Versatile One-Pot Synthesis of Supramolecular Plastics and Self-Healing Rubbers. J. Am. Chem. Soc., 131, 23, 7966–7967, 2009.

59. Montarnal, D., Cordier, P., Soulié-Ziakovic, C., Tournilhac, F., Leibler, L., Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J. Polym. Sci. Part Polym. Chem., 46, 24, 7925–7936, 2008.

60. Mynar, J.L. and Aida, T., The gift of healing. Nature, 451, 7181, 895–896, 2008.

61. Sordo, F., Mougnier, S.-J., Loureiro, N., Tournilhac, F., Michaud, V., Design of Self-Healing Supramolecular Rubbers with a Tunable Number of Chemical Cross-Links. Macromolecules, 48, 13, 4394–4402, 2015.

62. Khor, S.P., Varley, R.J., Shen, S.Z., Yuan, Q., Thermo-reversible healing in a crosslinked polymer network containing covalent and thermo-reversible bonds. J. Appl. Polym. Sci., 128, 6, 3743–3750, 2013.

63. Montarnal, D., Tournilhac, F., Hidalgo, M., Leibler, L., Epoxy-based networks combining chemical and supramolecular hydrogen-bonding cross-links. J. Polym. Sci. Part Polym. Chem., 48, 5, 1133–1141, 2010.

64. Liu, L., Zhu, L., Zhang, L., A Solvent-Resistant and Biocompatible Self-Healing Supramolecular Elastomer with Tunable Mechanical Properties. Macromol. Chem. Phys., 219, 4, 1700409, 2018.

65. Altuna, F.I., Casado, U., dell’Erba, I.E., Luna, L., Hoppe, C.E., Williams, R.J.J., Epoxy vitrimers incorporating physical crosslinks produced by selfassociation of alkyl chains. Polym. Chem., 11, 7, 1337–1347, 2020.

66. Kennedy, J.P. and Castner, K.F., Thermally reversible polymer systems by cyclopentadienylation. I. A model for termination by cyclopentadienylation of olefin polymerization. J. Polym. Sci. Polym. Chem. Ed., 17, 7, 2039–2054, 1979.

67. Stevens, M.P. and Jenkins, A.D., Crosslinking of polystyrene via pendant maleimide groups. J. Polym. Sci. Polym. Chem. Ed., 17, 11, 3675–3685, 1979.

68. Khan, N.I., Halder, S., Gunjan, S.B., Prasad, T., A review on Diels-Alder based self-healing polymer composites. IOP Conf. Ser. Mater. Sci. Eng., 377, 012007, 2018.

69. Chen, X., A Thermally Re-mendable Cross-Linked Polymeric Material. Science, 295, 5560, 1698–1702, 2002.

70. Chen, X., Wudl, F., Mal, A.K., Shen, H., Nutt, S.R., New Thermally Remendable Highly Cross-Linked Polymeric Materials. Macromolecules, 36, 6, 1802–1807, 2003.

71. Reutenauer, P., Buhler, E., Boul, P.J., Candau, S.J., Lehn, J.-M., Room Temperature Dynamic Polymers Based on Diels-Alder Chemistry. Chem.—Eur. J., 15, 8, 1893–1900, 2009.

72. Oehlenschlaeger, K.K., Mueller, J.O., Brandt, J., Hilf, S., Lederer, A., Wilhelm, M., Graf, R., Coote, M.L., Schmidt, F.G., Barner-Kowollik, C., Adaptable Hetero Diels–Alder Networks for Fast Self-Healing under Mild Conditions. Adv. Mater., 26, 21, 3561–3566, 2014.

73. Grigoras, M. and Colotin, G., Copolymerization of a bisanthracene compound with bismaleimides by Diels–Alder cycloaddition. Polym. Int., 50, 12, 1375–1378, 2001.

74. Jones, J.R., Liotta, C.L., Collard, D.M., Schiraldi, D.A., Cross-Linking and Modification of Poly(ethylene terephthalate-co-2,6-anthracenedicarbox-ylate) by Diels–Alder Reactions with Maleimides. Macromolecules, 32, 18, 5786–5792, 1999.

75. Zhang, G., Zhao, Q., Yang, L., Zou, W., Xi, X., Xie, T., Exploring Dynamic Equilibrium of Diels–Alder Reaction for Solid State Plasticity in Remoldable Shape Memory Polymer Network. ACS Macro Lett., 5, 7, 805–808, 2016.

76. Chakma, P. and Konkolewicz, D., Dynamic Covalent Bonds in Polymeric Materials. Angew. Chem. Int. Ed., 58, 29, 9682–9695, 2019.

77. Winne, J.M., Leibler, L., Du Prez, F.E., Dynamic covalent chemistry in polymer networks: A mechanistic perspective. Polym. Chem., 10, 45, 6091–6108, 2019.

78. Fortman, D.J., Brutman, J.P., Cramer, C.J., Hillmyer, M.A., Dichtel, W.R., Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. J. Am. Chem. Soc., 137, 44, 14019–14022, 2015.

79. Black, A.L., Lenhardt, J.M., Craig, S.L., From molecular mechanochemistry to stress-responsive materials. J. Mater. Chem., 21, 6, 1655–1663, 2011.

80. Tee, B.C.-K., Wang, C., Allen, R., Bao, Z., An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol., 7, 825, 2012.

81. Yang, Y., Terentjev, E.M., Wei, Y., Ji, Y., Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nat. Commun., 9, 1, 1906, 2018.

82. Shi, Q., Yu, K., Dunn, M.L., Wang, T., Qi, H.J., Solvent Assisted Pressure-Free Surface Welding and Reprocessing of Malleable Epoxy Polymers. Macromolecules, 49, 15, 5527–5537, 2016.

83. Scott, T.F., Schneider, A.D., Cook, W.D., Bowman, C.N., Photoinduced Plasticity in Cross-Linked Polymers. Science, 308, 5728, 1615–1617, 2005. 84. Kloxin, C.J., Scott, T.F., Park, H.Y., Bowman, C.N., Mechanophotopatterning on a Photoresponsive Elastomer. Adv. Mater., 23, 17, 1977–1981, 2011.

85. Kloxin, C.J., Scott, T.F., Bowman, C.N., Stress Relaxation via Addition–Fragmentation Chain Transfer in a Thiol-ene Photopolymerization. Macromolecules, 42, 7, 2551–2556, 2009.

86. Worrell, B.T., Mavila, S., Wang, C., Kontour, T.M., Lim, C.-H., McBride, M.K., Musgrave, C.B., Shoemaker, R., Bowman, C.N., A user’s guide to the thiol-thioester exchange in organic media: Scope, limitations, and applications in material science. Polym. Chem., 9, 36, 4523–4534, 2018.

87. Chatani, S., Kloxin, C.J., Bowman, C.N., The power of light in polymer science: Photochemical processes to manipulate polymer formation, structure, and properties. Polym. Chem., 5, 7, 2187–2201, 2014.

88. Wang, C., Goldman, T.M., Worrell, B.T., McBride, M.K., Alim, M.D., Bowman, C.N., Recyclable and repolymerizable thiol–X photopolymers. Mater. Horiz., 5, 6, 1042–1046, 2018.

89. Huck, W.T.S., Polymer networks take a bow. Nature, 472, 7344, 425–426, 2011.

90. Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A., Matyjaszewski, K., Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers through Reshuffling of Trithiocarbonate Units. Angew. Chem. Int. Ed., 50, 7, 1660–1663, 2011.

91. Amamoto, Y., Otsuka, H., Takahara, A., Matyjaszewski, K., Changes in Network Structure of Chemical Gels Controlled by Solvent Quality through Photoinduced Radical Reshuffling Reactions of Trithiocarbonate Units. ACS Macro Lett., 1, 4, 478–481, 2012.

92. Amamoto, Y., Otsuka, H., Takahara, A., Matyjaszewski, K., Self-Healing of Covalently Cross-Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light. Adv. Mater., 24, 29, 3975–3980, 2012.

93. Montarnal, D., Capelot, M., Tournilhac, F., Leibler, L., Silica-Like Malleable Materials from Permanent Organic Networks. Science, 334, 6058, 965–968, 2011.

94. Capelot, M., Unterlass, M.M., Tournilhac, F., Leibler, L., Catalytic Control of the Vitrimer Glass Transition. ACS Macro Lett., 1, 7, 789–792, 2012.

95. Pei, Z., Yang, Y., Chen, Q., Terentjev, E.M., Wei, Y., Ji, Y., Mouldable liquidcrystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater., 13, 1, 36–41, 2013.

96. Yang, Y., Pei, Z., Zhang, X., Tao, L., Wei, Y., Ji, Y., Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chem. Sci., 5, 9, 3486, 2014.

97. Yang, Y., Pei, Z., Li, Z., Wei, Y., Ji, Y., Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold. J. Am. Chem. Soc., 138, 7, 2118–2121, 2016.

98. Demongeot, A., Mougnier, S.J., Okada, S., Soulié-Ziakovic, C., Tournilhac, F., Coordination and catalysis of Zn 2+ in epoxy-based vitrimers. Polym. Chem., 7, 27, 4486–4493, 2016.

99. Legrand, A. and Soulié-Ziakovic, C., Silica–Epoxy Vitrimer Nanocomposites. Macromolecules, 49, 16, 5893–5902, 2016.

100. Chabert, E., Vial, J., Cauchois, J.-P., Mihaluta, M., Tournilhac, F., Multiple welding of long fiber epoxy vitrimer composites. Soft Matter, 12, 21, 4838–4845, 2016.

101. Yang, Y., Peng, G., Wu, S., Hao, W., A repairable anhydride-epoxy system with high mechanical properties inspired by vitrimers. Polymer, 159, 162–168, 2018.

102. Yu, K., Taynton, P., Zhang, W., Dunn, M.L., Qi, H.J., Reprocessing and recycling of thermosetting polymers based on bond exchange reactions. RSC Adv., 4, 20, 10108, 2014.

103. Shi, Q., Yu, K., Kuang, X., Mu, X., Dunn, C.K., Dunn, M.L., Wang, T., Jerry Qi, H., Recyclable 3D printing of vitrimer epoxy. Mater. Horiz., 4, 4, 598–607, 2017.

104. Altuna, F., Hoppe, C., Williams, R., Epoxy Vitrimers: The Effect of Transesterification Reactions on the Network Structure. Polymers, 10, 1, 43, 2018.

105. Altuna, F.I., Hoppe, C.E., Williams, R.J.J., Epoxy vitrimers with a covalently bonded tertiary amine as catalyst of the transesterification reaction. Eur. Polym. J., 113, 297–304, 2019.

106. Altuna, F.I., Hoppe, C.E., Williams, R.J.J., Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid. RSC Adv., 6, 91, 88647–88655, 2016.

107. Brutman, J.P., Delgado, P.A., Hillmyer, M.A., Polylactide Vitrimers. ACS Macro Lett., 3, 7, 607–610, 2014.

108. Altuna, F.I., Pettarin, V., Williams, R.J.J., Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. Green Chem., 15, 12, 3360–3366, 2013.

109. Lu, L., Fan, J., Li, G., Intrinsic healable and recyclable thermoset epoxy based on shape memory effect and transesterification reaction. Polymer, 105, 10–18, 2016.

110. Zhang, H. and Xu, X., Improving the transesterification and electrical conductivity of vitrimers by doping with conductive polymer wrapped carbon nanotubes. Compos. Part Appl. Sci. Manuf., 99, 15–22, 2017.

111. Rekondo, A., Martin, R., Ruiz de Luzuriaga, A., Cabañero, G., Grande, H.J., Odriozola, I., Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz., 1, 2, 237, 2014.

112. Martin, R., Rekondo, A., Ruiz de Luzuriaga, A., Santamaria, A., Odriozola, I., Mixing the immiscible: Blends of dynamic polymer networks. RSC Adv., 5, 23, 17514–17518, 2015.

113. Ruiz de Luzuriaga, A., Matxain, J.M., Ruipérez, F., Martin, R., Asua, J.M., Cabañero, G., Odriozola, I., Transient mechanochromism in epoxy vitrimer composites containing aromatic disulfide crosslinks. J. Mater. Chem. C, 4, 26, 6220–6223, 2016.

114. Ruiz de Luzuriaga, A., Martin, R., Markaide, N., Rekondo, A., Cabañero, G., Rodríguez, J., Odriozola, I., Epoxy resin with exchangeable disulfide cross-links to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz., 3, 3, 241–247, 2016.

115. Denissen, W., Rivero, G., Nicolaÿ, R., Leibler, L., Winne, J.M., Du Prez, F.E., Vinylogous Urethane Vitrimers. Adv. Funct. Mater., 25, 16, 2451–2457, 2015.

116. Lessard, J.J., Garcia, L.F., Easterling, C.P., Sims, M.B., Bentz, K.C., Arencibia, S., Savin, D.A., Sumerlin, B.S., Catalyst-Free Vitrimers from Vinyl Polymers. Macromolecules, 52, 5, 2105–2111, 2019.

117. Denissen, W., Droesbeke, M., Nicolaÿ, R., Leibler, L., Winne, J.M., Du Prez, F.E., Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat. Commun., 8, 1, 14857, 2017.

118. Lawton, M.I., Tillman, K.R., Mohammed, H.S., Kuang, W., Shipp, D.A., Mather, P.T., Anhydride-Based Reconfigurable Shape Memory Elastomers. ACS Macro Lett., 5, 2, 203–207, 2016.

119. Röttger, M., Domenech, T., van der Weegen, R., Breuillac, A., Nicolaÿ, R., Leibler, L., High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 356, 6333, 62–65, 2017.

120. Obadia, M.M., Mudraboyina, B.P., Serghei, A., Montarnal, D., Drockenmuller, E., Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C–N Bonds. J. Am. Chem. Soc., 137, 18, 6078–6083, 2015.

121. Lei, Z.Q., Xie, P., Rong, M.Z., Zhang, M.Q., Catalyst-free dynamic exchange of aromatic Schiff base bonds and its application to self-healing and remolding of crosslinked polymers. J. Mater. Chem. A, 3, 39, 19662–19668, 2015.

122. Li, H., Bai, J., Shi, Z., Yin, J., Environmental friendly polymers based on schiff-base reaction with self-healing, remolding and degradable ability. Polymer, 85, 106–113, 2016.

123. Kuhl, N., Bode, S., Bose, R.K., Vitz, J., Seifert, A., Hoeppener, S., Garcia, S.J., Spange, S., van der Zwaag, S., Hager, M.D., Schubert, U.S., Acylhydrazones as Reversible Covalent Crosslinkers for Self-Healing Polymers. Adv. Funct. Mater., 25, 22, 3295–3301, 2015.

124. Zhang, Z.P., Rong, M.Z., Zhang, M.Q., Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci., 80, 39–93, 2018.

125. Dahlke, J., Zechel, S., Hager, M.D., Schubert, U.S., How to Design a Self-Healing Polymer: General Concepts of Dynamic Covalent Bonds and Their Application for Intrinsic Healable Materials. Adv. Mater. Interfaces, 5, 17, 1800051, 2018.

126. Altuna, F.I., Puig, J., Hoppe, C.E., Williams, R.J.J., Remote actuation of epoxy nanocomposites with functional properties. J. Argent. Chem. Soc.—An. Asoc. Quim. Argent., 105, 2, 114–134, 2018.

127. Habault, D., Zhang, H., Zhao, Y., Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev., 42, 17, 7244, 2013.

128. Baffou, G., Quidant, R., Girard, C., Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett., 94, 15, 153109, 2009.

129. Govorov, A.O. and Richardson, H.H., Generating heat with metal nanoparticles. Nano Today, 2, 1, 30–38, 2007.

130. Rance, G.A., Marsh, D.H., Nicholas, R.J., Khlobystov, A.N., UV–vis absorption spectroscopy of carbon nanotubes: Relationship between the π-electron plasmon and nanotube diameter. Chem. Phys. Lett., 493, 1–3, 19–23, 2010.

131. Chen, G., Wu, K., Zhang, Q., Shi, Y., Lu, M., Dual-Responsive Shape Memory and Thermally Reconfigurable Reduced Graphene Oxide-Vitrimer Composites. Macromol. Res., 27, 6, 526–533, 2019.

132. Bao, Z., Liu, X., Liu, Y., Liu, H., Zhao, K., Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J. Pharm. Sci., 11, 3, 349–364, 2016.

133. Jung, H.S., Verwilst, P., Sharma, A., Shin, J., Sessler, J.L., Kim, J.S., Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev., 47, 7, 2280–2297, 2018.

134. Huang, L., Yi, N., Wu, Y., Zhang, Y., Zhang, Q., Huang, Y., Ma, Y., Chen, Y., Multichannel and Repeatable Self-Healing of Mechanical Enhanced Graphene-Thermoplastic Polyurethane Composites. Adv. Mater., 25, 15, 2224–2228, 2013.

135. Fang, M., Li, D., Lin, H., Luo, C., Qi, R., Peng, H., Flexible and recyclable conductive composite based on few-layered graphene with excellent self-healing capability. Eur. Polym. J., 108, 536–541, 2018.

136. Noack, M., Merindol, R., Zhu, B., Benitez, A., Hackelbusch, S., Beckert, F., Seiffert, S., Mülhaupt, R., Walther, A., Light-Fueled, Spatiotemporal Modulation of Mechanical Properties and Rapid Self-Healing of Graphene-Doped Supramolecular Elastomers. Adv. Funct. Mater., 27, 25, 1700767, 2017.

137. Yang, Z., Wang, Q., Wang, T., Dual-Triggered and Thermally Reconfigurable Shape Memory Graphene-Vitrimer Composites. ACS Appl. Mater. Interfaces, 8, 33, 21691–21699, 2016.

138. Lin, C., Sheng, D., Liu, X., Xu, S., Ji, F., Dong, L., Zhou, Y., Yang, Y., NIR induced self-healing electrical conductivity polyurethane/graphene nano-composites based on Diels–Alder reaction. Polymer, 140, 150–157, 2018.

139. Wu, S., Li, J., Zhang, G., Yao, Y., Li, G., Sun, R., Wong, C., Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics. ACS Appl. Mater. Interfaces, 9, 3, 3040–3049, 2017.

140. Weng, D., Xu, F., Li, X., Li, Y., Sun, J., Bioinspired photothermal conversion coatings with self-healing superhydrophobicity for efficient solar steam generation. J. Mater. Chem. A, 6, 47, 24441–24451, 2018.

141. Altuna, F.I., Antonacci, J., Arenas, G.F., Pettarin, V., Hoppe, C.E., Williams, R.J.J., Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks. Mater. Res. Express, 3, 4, 045003, 2016.

142. Zhang, H. and Zhao, Y., Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles. ACS Appl. Mater. Interfaces, 5, 24, 13069–13075, 2013.

143. Zhang, H., Fortin, D., Xia, H., Zhao, Y., Fast Optical Healing of Crystalline Polymers Enabled by Gold Nanoparticles. Macromol. Rapid Commun., 34, 22, 1742–1746, 2013.

144. Wang, Z., Li, Z., Wei, Y., Ji, Y., Gold Nanospheres Dispersed Light Responsive Epoxy Vitrimers. Polymers, 10, 1, 65, 2018.

145. Li, Y., Chen, S., Wu, M., Sun, J., Rapid and Efficient Multiple Healing of Flexible Conductive Films by Near-Infrared Light Irradiation. ACS Appl. Mater. Interfaces, 6, 18, 16409–16415, 2014.

146. Chen, L., Si, L., Wu, F., Chan, S.Y., Yu, P., Fei, B., Electrical and mechanical self-healing membrane using gold nanoparticles as localized “nano-heaters”. J. Mater. Chem. C, 4, 42, 10018–10025, 2016.

147. Burnworth, M., Tang, L., Kumpfer, J.R., Duncan, A.J., Beyer, F.L., Fiore, G.L., Rowan, S.J., Weder, C., Optically healable supramolecular polymers. Nature, 472, 7343, 334–337, 2011.

148. Chen, Q., Yu, X., Pei, Z., Yang, Y., Wei, Y., Ji, Y., Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chem. Sci., 8, 1, 724–733, 2017.

149. Fang, L., Chen, J., Zou, Y., Chen, S., Fang, T., Lu, C., Xu, Z., Self-Healing Epoxy Coatings via Focused Sunlight Based on Photothermal Effect. Macromol. Mater. Eng., 302, 9, 1700059, 2017.

150. Pu, W., Fu, D., Wang, Z., Gan, X., Lu, X., Yang, L., Xia, H., Realizing Crack Diagnosing and Self-Healing by Electricity with a Dynamic Crosslinked Flexible Polyurethane Composite. Adv. Sci., 5, 5, 1800101, 2018.

*Corresponding author: faltuna@fi.mdp.edu.ar; facundoaltuna@gmail.com

Corresponding author: hoppe@fi.mdp.edu.ar; cristinaehoppe@gmail.com

Self-Healing Smart Materials

Подняться наверх