Читать книгу Functionalized Nanomaterials for Catalytic Application - Группа авторов - Страница 29
References
Оглавление1. Savage, N. and Diallo, M.S., Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res., 7, 331–342, 2005.
2. WHO-Drinking water, report-2019. “Progress on household drinking water, sanitation and hygiene 2000-2017: Special focus on inequalities. New York: United Nations Children's Fund (UNICEF) and World Health Organization, 26, 2019. https://www.who.int/water_sanitation_health/publications/jmp-2019-full-report.pdf
3. Yadav, S., Asthana, A., Singh, A.K., Chakraborty, R., Sreevidya, S., Susan, Md.A.B.H., Carabineiro, S.A.C., Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: isotherm, kinetics and regeneration studies. J. Hazard. Mater., 409, 124840, 2021.
4. Raghav, S., Painuli, R., Kumar, D. et al., Threats to water: issues and challenges related to ground water and drinking water, in: A New Generation Material Graphene: Applications in Water Technology, M. Naushad (Ed.), pp. 1–19, Springer, Cham, 2019.
5. Aashima, Mehta, S.K., Impact of functionalized nanomaterials towards the environmental remediation: challenges and future needs, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 505–524, Elsevier, Netherlands, Amsterdam, 2020.
6. Singh, S.B., Hussain, C.M. et al., Functionalized nanographene for catalysis, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 111–129, Elsevier, Netherlands, Amsterdam, 2020.
7. Yadav, S., Asthana, A., Chakraborty, R., Jain, B., Singh, A.K., Carabineiro, S.A.C., Susan, Md.A.B.H., Cationic dye removal using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer nanocomposite. Nanomaterials, 10, 170, 2020.
8. Chakraborty, R., Verma, R., Asthana, A., Vidya., S., Singh, A.K., Adsorption of hazardous chromium (VI) ions from aqueous solutions using modified sawdust: kinetics, isotherm and thermodynamic modelling. Int. J. Environ. An. Chem., 1–18, 2019.
9. Chaudhary, S., Sharma, P., Chauhan, P., Kumar, R., Umar, A., Functionalized nanomaterials: a new avenue for mitigating environmental problems. Int. J. Environ. Sci. Te., 16, 5331–5358, 2019.
10. Theresa, M., Pendergast, M., Hoek, E.M.V., A review of water treatment membrane nanotechnologies. Energy. Environ. Sci., 4, 1946–1971, 2011.
11. Taghipour, S., Hosseini, S.M., Ataie-Ashtiani, B., Engineering nanomaterials for water and wastewater treatment: review of classifications, properties and applications. New. J. Chem., 43, 7902–7927, 1-18, 2019.
12. Sahoo, S.K., Hota, G. et al., Functionalization of graphene oxide with metal oxide nanomaterials: synthesis and applications for the removal of inorganic, toxic, environmental pollutants from water, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 299–326, Elsevier, Netherlands, Amsterdam, 2020.
13. Yadav, S., Asthana, A., Singh, A.K., Chakraborty, R., SreeVidya, S., Singh, A., Carabineiro, S.A.C., Methionine-functionalized graphene oxide/sodium alginate bio-polymer nanocomposite hydrogel beads: synthesis, isotherm and kinetic studies for an adsorptive removal of fluoroquinolone antibiotics. Nanomaterials, 11, 568, 2021.
14. Nayak, L., Rahaman, M., Giri, R. et al., Surface modification/functionalization of carbon materials by different techniques: an overview, in: Carbon-Containing Polymer Composites, M. Rahaman, D. Khastgir, A. Aldalbahi (Eds.), pp. 65–98, Springer Series on Polymer and Composite Materials, Springer, Singapore, 2019.
15. Kumari, P., Kumar, S., Singhal, A. et al., Magnetic nanoparticle-based nanocontainers for water treatment, in: Smart Nanocontainers, P.N. Tri, T.-O. Do, T.A. Nguyen (Eds.), pp. 487–498, Elsevier, Science, Amsterdam, 2020.
16. Haque, F., Daeneke, T., Kalantar-zadeh, K., Ou, J.Z., Two-Dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett., 10, 2, 23, 2018.
17. Rani, M., Shanker, U. et al., Remediation of organic pollutants by potential functionalized nanomaterials, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 327–398, Elsevier, Netherlands, Amsterdam, 2020.
18. Parvin, F., Rikta, S.Y., Shafi, M., Tareq, S.M., Application of nanomaterials for the removal of heavy metal from wastewater, in: Nanotechnology in Water and Wastewater Treatment: Theory and Applications, A. Ahsan and A.F. Ismail (Eds.), pp. 137–157, Elsevier, Netherlands, Amsterdam, 2019.
19. Liu, J., Feng, X., Fryxell, G.E., Wang, L.-Q., Kim, A.Y., Gong, M., Hybrid mesoporous materials with functionalized monolayers. Chem. Eng. Technol., 21, 1, 97–100, 1998.
20. Darwish, M., Mohammadi, A. et al., Functionalized nanomaterial for environmental techniques, in: Nanotechnology in Environmental Science, C.M. Hussain and A.K. Mishra (Eds.), pp. 315–349, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (Germany), 2018.
21. Chong, W.-C., Ko, C.-H., Lau, W.-J. et al., Mixed-matrix membranes incorporated with functionalized nanomaterials for water applications, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 15–51, Elsevier, Netherlands, Amsterdam, 2020.
22. Olatunde, O.C., Onwudiwe, D.C. et al., Copper-based ternary metal sulfide nanocrystals embedded in graphene oxide as photocatalyst in water treatment, in: Nanotechnology in the Beverage Industry: Fundamentals and Applications, A. Amrane, S. Rajendran, T.A. Nguyen, A.A. Assadi, A. Sharoba (Eds.), pp. 51–133, Elsevier, Netherlands, Amsterdam, 2020.
23. Nnaji, C.O., Jeevanandam, J., Chan, Y.S., Danquah, M.K., Pan, S., Barhoum, A. et al., Engineered nanomaterials for wastewater treatment: current and future trends, in: Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization, A.S.H. Makhlouf and A. Barhoum (Eds.), pp. 129–168, Elsevier, Netherlands, Amsterdam, 2018.
24. Riaz, R., Ali, M., Maiyalagan, T., Arbab, A.A., Anjum, A.S., Lee, S., Ko, M.J., Jeong, S.H., Activated charcoal and reduced graphene sheets composite structure for highly electrocatalytically active counter electrode material and water treatment. Int. J. Hydrogen Energ., 45, 13, 7751–7763, 2020.
25. Liu, G., Wang, S., Gondal, M.A., Shen, K., Xu, Q., Enhanced visible light photocatalytic performance of G-C3N4 photocatalysts Co-doped with gold and sulfur for degradation of persistent pollutant (Rhodamine B). J. Nanosci. Nanotechnol., 19, 2, 713–720, 2019.
26. Feng, Y., Yang, L., Liu, J., Logan, B., Electrochemical technologies for waste-water treatment and resource reclamation. Environ. Sci.: Water Res. Technol., 2, 800–831, 2016.
27. Pouran, S.R., Raman, A.A.A., Daud, W.M.A.W., Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J. Clean. Prod., 64, 24–35, 2014.
28. Zhang, X., Li, Z., Deng, Z., Pan, B. et al., Porous nanocomposites for water treatment: past, present, and future, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 479–503, Elsevier, Netherlands, Amsterdam, 2020.
29. Xiao, J., Xie, Y., Cao, H., Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 121, 1–17, 2015.
30. Nazarabad, M.K., Goharshadi, E.K., Mahdizadeh, S.J., Efficient photoelectrocatalytic water oxidation by palladium doped g-C3N4 electrodeposited thin film. J. Phys. Chem. C., 123, 43, 26106–26115, 2019.
31. Lin, Y., Cao, Y., Yao, Q., Chai, O.J.H., Xie, J., Engineering noble metal nanomaterials for pollutant decomposition. Ind. Eng. Chem. Res., 59, 47, 20561–20581, 2020.
32. Divyapriya, G. and Nidheesh, P.N., Importance of graphene in the electro-Fenton process. ACS Omega, 5, 10, 4725–4732, 2020.
33. Chen, Z., Liu, Y., Wei, W., Ni, B.-J., Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci.: Nano, 6, 2332– 2366, 2019.
34. Mishra, D., Srivastava, M. et al., Low-dimensional nanomaterials for the photocatalytic degradation of organic pollutants, in: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities, Singh, P., Borthakur, A., Mishra, P.K., Tiwary, D. (Eds.), pp. 15–38, Elsevier, Netherlands, Amsterdam, 2020.
35. Chaturvedi, S., Pragnesh N. Dave, P.N., Shah, N.K., Applications of nanocatalyst in new era. J. Saud. Chem. Soc., 16, 3, 307–325, 2012.
36. Salgado, J.R.C., Duarte, R.G., Ilharco, L.M., Rego, A.M.B., Ferraria, A.M., Ferreira, M.G.S., Effect of functionalized carbon as Pt electrocatalyst support on the methanol oxidation reaction. Appl. Catal. B. Environ., 102, 496–504, 2011.
37. Ren, X., Qianyuan Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A., Wu, G., Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels, 4, 15–30, 2020.
38. Sui, S., Wang, X., Zhou, X., Su, Y., Riffat, S., Liu, C-j., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A, 5, 1808–1825, 2017.
39. Qu, R., Liu, N., Chen, Y., Zhang, W., Zhang, Q., Liu, Y., Feng, L., A MoS2 nanosheet-coated mesh for pH-induced multi-pollutant water remediation with in situ electrocatalysis. J. Mater. Chem. A., 6, 6435–6441, 2018.
40. Wang, X., Xie, Y., Yang, G., Hao, J., Ma, J., Ning, P., Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach. Front. Environ. Sci. Eng., 14, 22, 2020.
41. Qiu, L., Peng, Y., Liu, B., Lin, B., Peng, Y., Malik, M.J., Yan, F., Polypyrrole nanotube-supported gold nanoparticles: an efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol. Appl. Catal. A: Gen., 413–414, 230–237, 2012.
42. Yang, Y., Wang, H., Li, J., He, B., Wang, T., Liao, S., Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment. Environ. Sci. Technol., 46, 12, 6815–6821, 2012.
43. Bankole, M.Y., Abdulkareem, A.S., Mohammed, I.A., Ochigbo, S.S., Tijani, J.O., Abubakre, O.K., Roos, W.D., Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci. Rep., 9, 4475, 2019.
44. Chen, Y., Li, H., Li, W., Tu, Y., Zhang, Y., Han, W., Wang, L., Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2- NTs/SnO2-Sb/PbO2 electrode. Chemosphere, 113, 48–55, 2014.
45. Yu, L., Chen, Y., Han, W., Sun, X., Li, J., Wang, L., Preparation of porous TiO2-NTs/m-SnO2-Sb electrode for electrochemical degradation of benzoic acid. RSC Adv., 6, 19848–19856, 2016.
46. Cui, C., Wu, J., Xin, Y., Han, Y., Highly stable palladium-loaded TiO2 nanotube array electrode for the electrocatalytic hydrodehalogenation of poly-chlorinated biphenyls. Korean J. Chem. Eng., 32, 1069–1074, 2015.
47. Zhou, X., Xu, D., Chen, Y., Hu, Y., Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@PC modified cathode. Chem. Eng. J., 384, 123324, 2020.
48. Ganiyu, S.O., Zhou, M., Carlos, A., Mart´ınez-Huitle, Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal, B: Environ., 235, 103–129, 2018.
49. Barros, W.R.P., Steter, J.R., Lanza, M.R.V., Tavares, A.C., Catalytic activity of Fe3-x CuxO4(0 ≤ x ≤ 0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process. Appl. Catal, B: Environ., 180, 434–441, 2016.
50. Liang, L., Yu, F., An, Y., Liu, M., Zhou, M., Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process. Environ. Sci. Pollut. Res., 24, 1122–1132, 2017.
51. Lu, J-Y., Yuan, Y-R., Hu, X., Liu, W-J., Li, C-X., Liu, H., Li, W-W., MOF-derived Fe2O3/nitrogen/carbon composite as stable heterogeneous electro-Fenton catalyst. Ind. Eng. Chem. Res., 59, 5, 1800–1808, 2020.
52. Zhao, H., Qian, L., Guan, X., Wu, D., Zhao, G., Continuous bulk FeCuC aerogel with ultradispersed metal nanoparticles: an efficient 3D heterogeneous electro-Fenton cathode over a wide range of pH 3-9. Environ. Sci. Technol., 50, 10, 5225–5233, 2016.
53. Zhong, Y., Liang, X., Tan, W., Zhong, Y., He, H., Zhu, J., Yuan, P., Jiang, Z., A comparative study about the effects of isomorphous substitution of transition metals (Ti, Cr, Mn, Co and Ni) on the UV/Fenton catalytic activity of magnetite. J. Mol. Catal. A: Chem., 372, 29–34, 2013.
54. Liang, X., Zhong, Y., Zhu, S., Ma, L., Yuan, P., Zhu, J., He, H., Jiang., Z., The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. J. Hazard. Mater., 199-200, 247–254, 2012.
55. Zhong, Y., Chen, Z.-F., Yan, S.-C., Wei, W.-W., Zhang, Q., Liu, G., Cai, Z., Yu, L., Photocatalytic transformation of climbazole and 4-chlorophenol formation using a floral array of chromium-substituted magnetite nanoparticles activated with peroxymonosulfate. Environ. Sci.: Nano, 6, 2986–2999, 2019.
56. Cui, L., Huang, H., Ding, P., Zhu, S., Jing, W., Gu, X., Cogeneration of H2O2 and ·OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor. Sep. Purif. Technol., 237, 116380, 2020.
57. Zhao, H., Wang, Y., Wang, Y., Cao, T., Zhao, G., Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Appl. Catal. B: Environ., 125, 120–127, 2012.
58. Mi, X., Li, Y., Ning, X., Jia, J., Wang, H., Xia, Y., Sun, Y., Zhan, S., Electro-Fenton degradation of ciprofloxacin with highly ordered mesoporous MnCo2O4-CF cathode: enhanced redox capacity and accelerated electron transfer. Chem. Eng. J., 358, 299–309, 2019.
59. Cao, P., Zhao, K., Quan, X., Chen, S., Yu, H., Efficient and stable heterogeneous electro-Fenton system using iron oxides embedded in Cu, N co-doped hollow porous carbon as functional electrocatalyst. Sep. Purif. Technol., 238, 116424, 2020.
60. Dong, P., Liu, W., Wang, S., Wang, H., Wang, Y., Zhao, C., In suit synthesis of Fe3O4 on carbon fiber paper@polyaniline substrate as novel self-supported electrode for heterogeneous electro-Fenton oxidation. Electrochim. Acta, 308, 54–63, 2019.
61. Wang, Y., Zhang, H., Li, B., Yu, M., Zhao, R., Xu, X., Cai, L., γ-FeOOH graphene polyacrylamide carbonized aerogel as air-cathode in electro-Fenton process for enhanced degradation of sulfamethoxazole. Chem. Eng. J., 359, 914–923, 2019.
62. Wu, P., Zhang, Y., Chen, Z., Duan, Y., Lai, Y., Fang, Q., Wang, F., Li, S., Performance of boron-doped graphene aerogel modified gas diffusion electrode for in-situ metal-free electrochemical advanced oxidation of Bisphenol A. Appl. Catal. B: Environ., 255, 117784, 2019.
63. Mi, X., Han, J., Sun, Y., Li, Y., Hu, W., Zhan, S., Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: influence factors, reaction mechanism and pathways. J. Hazard. Mater., 367, 365–374, 2019.
64. Yu, F., Wang, Y., Ma, H., Enhancing the yield of H2O2 from oxygen reduction reaction performance by hierarchically porous carbon modified active carbon fiber as an effective cathode used in electro-Fenton. J. Electroanal. Chem., 838, 57–65, 2019.
65. Zhang, C., Zhou, M., Ren, G., Yu, X., Ma, L., Yang, J., Yu, F., Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res., 70, 414–424, 2015.
66. Haider, M.R., Jiang, W.-L., Han, J.-L., Sharif, H.M.A., Ding, Y.-C., Cheng, H.-Y., Wang, A.-J., In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants. Appl. Catal. B: Environ., 256, 117774, 2019.
67. Cao, P., Quan, X., Zhao, K., Chen, S., Yu, H., Niu, J., Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fentoncatalysis. J. Hazard. Mater., 382, 121102, 2020.
68. Ye, Z., Guelfi, D.R.V., Álvarez, G., Alcaide, F., Brillas, E., Sirés, I., Enhanced electrocatalytic production of H2O2 at Co-based air-diffusion cathodes for the photoelectro-Fenton treatment of bronopol. Appl. Catal. B: Environ., 247, 191–199, 2019.
69. Zhou, X., Xu, D., Chen, Y., Hu, Y., Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@PC modified cathode. Chem. Eng. J., 384, 123324, 2020.
70. Yang, Y., Liu, Y., Fang, X., Miao, W., Chen, X., Sun, J., Ni, B.-J., Mao, S., Heterogeneous electro-Fenton catalysis with HKUST-1-derived Cu@C decorated in 3D graphene network. Chemosphere, 243, 125423, 2020.
71. García-Rodríguez, O., Bañuelos, J.A., El-Ghenymy, A., Godínez, L.A., Brillas, E., Rodríguez-Valadez, F.J., Use of a carbon felt-iron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photoelectro-Fenton processes. J. Electroanal. Chem., 767, 40–48, 2016.
72. Liu, T., Wang, K., Song, S., Brouzgou, A., Tsiakaras, P., Wang, Y., New electro-Fenton gas diffusion cathode based on nitrogen-doped Graphene@Carbon nanotube composite materials. Electrochim. Acta, 194, 228–238, 2016.
73. Le, T.H.H., Dumée, L.F., Lacour, S., Rivallin, M., Yi, Z., Kong, L., Bechelany, M., Cretin, M., Hybrid graphene-decorated metal hollow fibre membrane reactors for efficient electro-Fenton - Filtration co-processes. J. Membrane Sci., 587, 117182, 2019.
74. Pajootan, E., Arami, M., Rahimdokht, M., Discoloration of wastewater in a continuous electro-Fenton process using modified graphite electrode with multi-walled carbon nanotubes/surfactant. Sep. Purif. Technol., 130, 34–44, 2014.
75. Divyapriya, G., Nambi, I., Senthilnathan, J., Ferrocene functionalized graphene based electrode for the electro-Fenton oxidation of ciprofloxacin. Chemosphere, 209, 113–123, 2018.
76. Li, Z., Shen, C., Liu, Y., Ma, C., Li, F., Yang, B., Huang, M., Wang, Z., Dong, L., Wolfgang, S., Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton. Appl. Catal. B: Environ., 260, 118204, 2020.
77. Wen, S., Niu, Z., Zhang, Z., Li, L., Chen, Y., In-situ synthesis of 3D GA on titanium wire as a binder-free electrode for electro-Fenton removing of EDTA-Ni. J. Hazard. Mater., 341, 5, 128–137, 2018.
78. Wang, X., Zhang, X., Zhang, Y., Wang, Y., Sun, S.-P., Wu, W.D., Wu, Z., Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: a review. J. Mater. Chem. A, Advance Article, 8, 15513–15546, 2020.
79. Thomas, N., Dionysiou, D.D., Pillai S.C., Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard. Mater., 404, part B, 124082, 2021.
80. Akinremi, C.A., Rashid, S., Upreti, P.D., Chi, G.T., Huddersman, K., Regeneration of a deactivated surface functionalised polyacrylonitrile supported Fenton catalyst for use in wastewater treatment. RSC Adv., 10, 12941–12952, 2020.
81. Wan, Z. and Wang, J., Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. J. Hazard. Mater., 324-B, 653–664, 2017.
82. Zhou, L., Shao, Y., Liu., J., Ye, Z., Zhang, H., Ma, J., Jia, Y., Gao, W., Li, Y., Preparation and characterization of magnetic porous carbon microspheres for removal of Methylene Blue by a heterogeneous Fenton reaction. ACS Appl. Mater. Interfaces, 6, 10, 7275–7285, 2014.
83. Espinosa, J.C., Catalá, C., Navalón, S., Ferrer, B., Álvaro, M., García, H., Iron oxide nanoparticles supported on diamond nanoparticles as efficient and stable catalyst for the visible light assisted Fenton reaction. Appl. Catal. B: Environ., 226, 242–251, 2018.
84. Neamtu, M., Nadejde, C., Hodoroaba, V.-D., Schneider, R.J., Verestiuc, L., Panne, U., Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep., 8, 6278, 2018.
85. Qiu, S., Li, G., Deng, F., Fang, M.A., Different heterogeneous Fenton reaction based on foam carrier loaded with photocatalysts. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 33, 85–90, 2018.
86. Bui, V.K.H., Park, D., Pham, T.N.H., An, Y., Choi, J.S., Lee, H.-U., Kwon, O.-H., Moon, J.-Y., Kim, K.-T., Lee, Y.-C., Synthesis of MgAC-Fe3O4/TiO2 hybrid nanocomposites via sol-gel chemistry for water treatment by photo-Fenton and photocatalytic reactions. Sci. Rep., 9, 11855, 2019.
87. Li, X., Li, C., Gao, G., Lv, B., Xu, L., Lu, Y., Zhang, G., In-situ self-assembly of robust Fe (III)-carboxyl functionalized polyacrylonitrile polymeric bead catalyst for efficient photo-Fenton oxidation of p-nitrophenol. Sci. Total Environ., 702, 134910, 2020.
88. Pal, S., Singh, P.N., Verma, A., Kumar, A., Tiwary, D., Prakash, R., Sinha, I., Visible light photo-Fenton catalytic properties of starch functionalized iron oxyhydroxide nanocomposites. Environ. Nanotechnol. Monit. Manag., 14, 100311, 2020.
89. Xu, Z., Huang, C., Wang, L., Pan, X., Qin, L., Guo, X., Zhang, G., Sulfate functionalized Fe2O3 nanoparticles on TiO2 nanotube as efficient visible light-active photo-Fenton catalyst. Ind. Eng. Chem. Res., 54, 16, 4593–4602, 2015.
90. Banić, N., Abramović, B., Krstić, J., Šojić, D., Lončarević, D., Cherkezova-Zheleva, Z., Guzsvány, V., Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst. Appl. Catal. B: Environ., 107, 3-4, 363–371, 2011.
91. Zhu, Y., Zeng, C., Zhu, R., Xu, Y., Wang, X., Zhou, H., Zhu, J., He, H., TiO2/Schwertmannite nanocomposites as superior co-catalysts in heterogeneous photo-Fenton process. J. Environ. Sci., 80, 208–217, 2019.
92. Deng, Y., Xing, M., Zhang, J., An advanced TiO2/Fe2TiO5/Fe2O3 tripleheterojunction with enhanced and stable visible-light-driven fenton reaction for the removal of organic pollutants. Appl. Catal. B: Environ., 211, 157–166, 2017.
93. Zhang, X., Zhang, Y., Yu, Z., Wei, X., Wu, W.D., Wang, X., Wu, Z., Facile synthesis of mesoporous anatase/rutile/hematite triple heterojunctions for superior heterogeneous photo-Fenton catalysis. Appl. Catal. B: Environ., 263, 118335, 2020.
94. Li, Q., Kong, H., Li, P., Shao, J., He, Y., Photo-Fenton degradation of amoxicillin via magnetic TiO2 - graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR).
95. An, S., Zhang, G., Wang, T., Zhang, W., Li, K., Song, C., Miller, J.T., Miao, S., Wang, J., Guo, X., High-Density ultrasmall cluster and single-atom Fe sites embedded in g-C3N4 for highly efficient catalytic advanced oxidation processes. ACS Nano, 12, 9, 9441–9450, 2018.
96. Xi, J., Xia, H., Ning, X., Zhang, Z., Liu, J., Mu, Z., Zhang, S., Du, P., Lu, X., Carbon-intercalated 0D/2D hybrid of hematite quantum dots/graphitic carbon nitride nanosheets as superior catalyst for advanced oxidation. Small, 15, 43, 1902744, 2019.
97. Wang, Y., Song, H., Chen, J., Chai, S., Shi, L., Chen, C., Wang, Y., He, C., A novel solar photo-Fenton system with self-synthesizing H2O2: enhanced photo-induced catalytic performances and mechanism insights. Appl. Surf. Sci., 512, 145650, 2020.
98. Wang, Q., Wang, P., Xu, P., Li, Y., Duan, J., Zhang, G., Hu, L., Wang, X., Zhang, W., Visible-light-driven photo-Fenton reactions using Zn1-1.5xFexS/g- C3N4 photocatalyst: degradation kinetics and mechanisms analysis. Appl. Catal. B: Environ., 266, 118653, 2020.
99. Zhang, S., Gao, H., Huang, Y., Wang, X., Hayat, T., Li, J., Xu, X., Wang, X., Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation. J. Hazard. Mater., 373, 437–446, 2019. Environ. Sci.: Nano, 5, 1179–1190, 2018.
100. Zhao, Y., Kang, S., Qin, L., Wang, W., Zhang, T., Song, S., Komarneni, S., Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chem. Eng. J., 379, 122322, 2020.
101. Du, X., Zhao, T., Xiu, Z., Yang, Z., Xing, Z., Li, Z., Yang, S., Zhou, W., Nanozero-valent iron and MnOx selective deposition on BiVO4 decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. J. Hazard. Mater., 377, 330–340, 2019.
102. Xie, A., Cui, J., Yang, J., Chen, Y., Lang, J., Li, C., Yan, Y., Dai, J., Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Appl. Catal. B: Environ., 264, 118548, 2020.
103. Jiang, J., Wang, X., Liu, Y., Ma, Y., Li, T., Lin, Y., Xie, T., Dong, S., Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: degradation mechanism, pathways, and products toxicity assessment. Appl. Catal. B: Environ., 278, 119349, 2020.
104. Shao, P., Tian, J., Liu, B., Shi, W., Gao, S., Song, Y., Ling, M., Cui, F., Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system. Nanoscale, 7, 14254–14263, 2015.
105. Liu, R., Xu, Y., Chen, B., Self-Assembled nano-FeO(OH)/reduced graphene oxide aerogel as a reusable catalyst for photo-Fenton degradation of phenolic organics. Environ. Sci. Technol., 52, 12, 7043–7053, 2018.
106. Huang, S., Zhang, Q., Liu, P., Ma, S., Xie, B., Yang, K., Zhao, Y., Novel upconversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system. Appl. Catal. B: Environ., 263, 118336, 2020.
107. Gonçalves, N.P.F., Minella, M., Fabbri, D., Calza, P., Malitesta, C., Mazzotta, E., Prevot, A.B., Humic acid coated magnetic particles as highly efficient heterogeneous photo-Fenton materials for wastewater treatments. Chem. Eng. J., 390, 124619, 2020.
108. Du, D., Shi, W., Wang, L., Zhang, J., Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline. Appl. Catal. B: Environ., 200, 484–492, 2017.
109. Li, L., Liang, M., Huang, J., Zhang, S., Liu, Y., Li, F., Fe and Cu co-doped graphitic carbon nitride as an eco-friendly photo-assisted catalyst for aniline degradation. Environ. Sci. Pollut. Res., 27, 29391–29407, 2020.
110. Zhao, H., Qian, L., Lv, H., Wang, Y., Zhao, G., Introduction of a Fe3O4 core enhances the photocatalytic activity of MIL-100(Fe) with tunable shell thickness in the presence of H2O2. ChemCatChem, 7, 24, 4148–4155, 2015.
111. Dresselhaus, M. and Thomas, I., Alternative energy technologies. Nature, 414, 332–337, 2001.
112. Wang, F., Li, Q., Xu, D., Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater., 7, 23, 1–50, 2017.
113. Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., Isa, M.H., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J. Ind. Eng. Chem., 26, 1–36, 2015.
114. Dewangan, R., Hashmi, A., Asthana, A., Singh, A.K., Susan, M.A.B.H., Degradation of methylene blue and methyl violet using graphene oxide/NiO/β-cyclodextrin nanocomposites as photocatalyst. Int. J. Environ. An. Ch., 2020.
115. Pichat, P., Self-cleaning materials based on solar photocatalysis, in: New and Future Developments in Catalysis Solar Photocatalysis, S.L. Suib (Ed.), pp. 167–190, Elsevier, Netherlands, Amsterdam, 2013.
116. Darkwah, W.K. and Ao, Y., Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications. Nanoscale Res. Lett., 13, 388, 2018.
117. Teng, Z., Yang, N., Lv, H., Wang, S., Hu, M., Wang, C., Wang, D., Wang, G., Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem, 5, 3, 664–680, 2019.
118. Guo, L., Jing, D., Liu, M., Chen, Y., Shen, S., Shi, J., Zhang, K., Functionalized nanostructures for enhanced photocatalytic performance under solar light. Beilstein J. Nanotechnol., 5, 994–1004, 2014.
119. Gao, C., Low, J., Long, R., Kong, T., Zhu, J., Xiong, Y., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev., 120, 21, 12175–12216, 2020.
120. Bora, L.V. and Mewada, R.K., Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew. Sust. Energ. Rev., 76, 1393–1421, 2017.
121. Chen, Y. and Bai, X., A review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts, 10, 142, 2020.
122. Wang, T., Nie, C., Ao, Z., Wang, S., An, T., Recent progress in g-C3N4 quantum dots: synthesis, properties and applications in photocatalytic degradation of organic pollutants. J. Mater. Chem. A, 8, 485–502, 2020.
123. Xia, Y., Wang, J., Chen, R., Zhou, D., Xiang, L., A review on the fabrication of hierarchical ZnO nanostructures for photocatalysis application. Crystals, 6, 148, 2016.
124. Jacinto, M.J., Ferreira, L.F., Silva, V.C., Magnetic materials for photocatalytic applications - a review. J. Sol-Gel Sci. Techn., 96, 1–14, 2020.
125. Yang, K., Wang, J., Chen, X., Zhao, Q., Ghaffar, A., Chen, B., Application of graphene-based materials in water purification: from the nanoscale to specific devices. Environ. Sci.: Nano, 5, 1264–1297, 2018.
126. Sadegh, H., Ali, G.A.M., Gupta, V.K., Makhlouf, A.S.H., Shahryari, G.R., Nadagouda, M.N., Sillanpa, M., Megie, E., The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem., 7, 1–14, 2017.
127. Bagheri, S., Julkapli, N.M., Hamid, S.B.A., Functionalized activated carbon derived from biomass for photocatalysis applications perspective. Int. J. Photoenergy, 2015, 30, 2015.
128. Mondal, K. and Sharma, A., Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process. RSC Adv., 6, 83589, 2016.
129. Li, S., Yu, X., Zhang, G., Ma, Y., Yao, J., Keita, B., Louis, N., Zhao, H., Green chemical decoration of multiwalled carbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: visible light photocatalytic activities. J. Mater. Chem., 21, 228, 2011.
130. Xu, Y., Liu, J., Xie, M., Jing, L., Xu, H., She, X., Li, H., Xie, J., Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation. Chem. Eng. J., 357, 487–497, 2019.
131. Khan, J., Ilyas, S., Akram, B., Ahmad, K., Hafee, M., Siddiq, M., Ashra, M.A., Zno/NiO coated multi-walled carbon nanotubes for textile dyes degradation. Arab. J. Chem., 11, 6, 896, 2018.
132. Shaban, M., Ashraf, A.M., Abukhadra, M.R., TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci. Rep., 8, 781, 2018.
133. El-Sayed, B.A., Mohamed, W.A.A., Galal, H.R., El-Bary, H.M.A., Ahmed, M.A.M., Photocatalytic study of some synthesized MWCNTs/TiO2 nanocomposites used in the treatment of industrial hazard materials. Egypt. J. Pet., 28, 247–252, 2019.
134. Chae, S.-R., Hotze, E.M., Wiesner, M.R. et al., Possible applications of fullerene nanomaterials in water treatment and reuse, in: Nanotechnology Applications for Clean Water (2nd Edition) Solutions for Improving Water Quality Micro and Nano Technologies, A. Street, R. Sustich, J. Duncan, N. Savage (Eds.), pp. 329–338, Elsevier, William Andrew, Norwich, NY, 2014.
135. Albiter, E., Barrera-Andrade, J.M., Rojas-García, E., Valenzuela, M.A., Recent advances of nanocarbon-inorganic hybrids in photocatalysis, in: Nanocarbon and its Composites Preparation, Properties and Applications, A. Khan, M. Jawaid, Dr. Inamuddin, A.M.A. Asiri (Eds.), pp. 521–588, Woodhead Publishing, Elsevier, United Kingdom, 2019.
136. Regulska, E., Rivera-Nazario, D.M., Karpinska, J., Plonska-Brzezinska, M.E., Echegoyen, L., Zinc porphyrin-functionalized fullerenes for the sensitization of titania as a visible-light active photocatalyst: riverwaters and wastewaters remediation. Molecules, 24, 1118, 2019.
137. Chai, B., Liao, X., Song, F., Zhou, H., Fullerene modified C3N4 composites with enhanced photocatalytic activity under visible light irradiation. Dalton Trans., 43, 982–989, 2014.
138. Krishna, V., Noguchi, N., Koopman, B., Moudgil, B., Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. J. Colloid Interf. Sci., 304, 166–171, 2006.
139. Bonchio, M., Carraro, M., Scorrano, G., Bagno, A., Photooxidation in water by new hybrid molecular photocatalysts integrating an organic sensitizer with a polyoxometalate core. Adv. Synth. Catal., 346, 648–654, 2004.
140. Wang, S., Liu, C., Dai, K., Cai, P., Chen, H., Yang, C., Huang, Q., Fullerene C70–TiO2 hybrids with enhanced photocatalytic activity under visible light irradiation. J. Mater. Chem. A, 3, 21090–21098, 2015.
141. Muthirulan, P., Devi, C.N., Sundaram, M.M., TiO2 wrapped graphene as a high performance photocatalyst for acid orange 7 dye degradation under solar/UV light irradiations. Ceram. Int., 40, 4, 5945–5957, 2014.
142. Xiang, Q., Yu, J., Jaroniec, M., Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 41, 782–796, 2012.
143. Jain, B., Hashmi, A., Sanwaria, S., Singh, A.K., Susan, M.A.B.H., Singh, A., Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv. Compos. Hybrid. Mater., 3, 231–242, 2020.
144. Filice, S., D’Angelo, D., Spanò, S.F., Compagnini, G., Sinatra, M., D’Urso, L., Fazio, E., Privitera, V., Scalese, S., Modification of graphene oxide and graphene oxide-TiO2 solutions by pulsed laser irradiation for dye removal from water. Mat. Sci. Semicon. Proc., 42-1, 50–53, 2016.
145. Rao, G., Zhang, Q., Zhao, H., Chen, J., Li, Y., Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chem. Eng. J., 302, 633–640, 2016.
146. Shi, Y., Huang, J., Zeng, G., Cheng, W., Hu, J., Shi, L., Yi, K., Evaluation of self-cleaning performance of the modified g-C3N4 and GO based PVDF membrane toward oil-in-water separation under visible-light. Chemosphere, 230, 40–50, 2019.
147. Gnanamoorthy, G., Muthamizh, S., Sureshbabu, K., Munusamy, S., Padmanaban, A., Kaaviya, A., Nagarajan, R., Stephen, A., Narayanan, V., Photocatalytic properties of amine functionalized Bi2Sn2O7/rGO nanocomposites. J. Phys. Chem. Solids, 118, 21–31, 2018.
148. Liu, H., Jin, Z., Su, Y., Wang, Y., Visible light-driven Bi2Sn2O7/reduced graphene oxide nanocomposite for efficient photocatalytic degradation of organic contaminants. Sep. Purif. Technol., 142, 25–32, 2015.
149. Ong, W.-J., Tan, L.-L., Ng, Y.H., Yong, S.-T., Chai, S.-P., Graphitic Carbon Nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev., 116, 12, 7159–7329, 2016.
150. Jiang, J., Song, Y., Wang, X., Li, T., Li, M., Lin, Y., Xie, T., Dong, S., Enhancing aqueous pollutants photodegradation via fermi level matched Z-scheme BiOI/Pt/g-C3N4 photocatalyst: unobstructed photogenerated charge behavior and degradation pathway exploration. Catal. Sci. Technol., 10, 3324–3333, 2020.
151. He, Y., Zhang, L., Wang, W., Wu, Y., Lin, H., Zhao, L., Weng, W., Wand, H., Fan, M., Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation. RSC Adv., 4, 13610, 2014.
152. Wang, C., Wang, G., Zhang, X., Dong, X., Ma, C., Zhang, X., Ma, H., Xue, M., Construction of g-C3N4 and FeWO4 Z-scheme photocatalyst: effect of contact ways on the photocatalytic performance. RSC Adv., 8, 18419–18426, 2018.
153. Lu, D., Wang, H., Zhao, X., Kondammareddy, K.K., Ding, J., Li, C., Fang, P., Highly efficient visible-light-induced photoactivity of Z-Scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustainable Chem. Eng., 5, 2, 1436–1445, 2017.
154. Huang, Z., Sun, Q., Lv, K., Zhang, Z., Li, M., Li, B., Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photo catalyst: (0 0 1) vs (1 0 1) facets of TiO2. Appl. Catal. B: Environ., 164, 420–427, 2015.
155. Wu, J., Miao, X., Shen, X., Ji, Z., Wang, J., Wang, T., Liu, M., An all-solid-state Z-scheme g-C3N4/Ag/Ag3VO4 photocatalyst with enhanced visible-light photocatalytic performance. Eur. J. Inorg. Chem., 2017, 21, 2845–2853, 2017.
156. Chen, D., Wang, K., Ren, T., Ding, H., Zhu, Y., Synthesis and characterization of the ZnO/mpg-C3N4 heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Trans., 43, 13105–13114, 2014.
157. Sierra, M., Borges, E., Esparza, P., Méndez-Ramos, J., Martín-Gil, J., Martín-Ramos, P., Photocatalytic activities of coke carbon/g-C3N4 and Bi metal/Bi mixed oxides/g-C3N4 nanohybrids for the degradation of pollutants in wastewater. Sci. Technol. Adv. Mat., 17, 1, 659–668, 2016.
158. Li, T., Zhao, L., He, Y., Cai, J., Luo, M., Lin, J., Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B: Environ., 129, 255–263, 2013.
159. Rashidizadeh, A., Ghafuri, H., Rezazadeh, Z., Improved visible-light photo-catalytic activity of g-C3N4/CuWO4 nanocomposite for degradation of methylene blue. Proceedings, 41, 43, 2019.
160. Li, C., Wang, S., Wang, T., Wei, Y., Zhang, P., Gong, J., Monoclinic porous BiVO4 networks decorated by discrete g-C3N4 nano-islands with tunable coverage for highly efficient photocatalysis. Small, 10, 14, 2783–90, 2741, 2014.
161. Li, H., Yu, H., Quan, X., Chen, S., Zhang, Y., Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4(Metal = Cu, Ag, Au). ACS Appl. Mater. Interfaces, 8, 3, 2111–2119, 2016.
162. Yang, Y., Guo, W., Guo, Y., Zhao, Y., Yuan, X., Guo, Y., Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J. Hazard. Mater., 271, 150–159, 2014.
163. Fu, J., Chang, B., Tian, Y., Xi, F., Dong, D., Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A, 1, 3083–3090, 2013.
164. Yang, Y., Guo, Y., Liu, F., Yuan, X., Guo, Y., Zhang, S., Guo, W., Huo, M., Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal. B: Environ., 142–143, 828–837, 2013.
165. Ma, D., Wu, J., Gao, M., Xin, Y., Ma, T., Sun, Y., Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chem. Eng. J., 290, 136–146, 2016.
166. Jiang, Z., Zhu, C., Wan, W., Qian, K., Xie, J., Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A, 4, 1806–1818, 2016.
167. Sahoo, A. and Patra, S., A magnetically separable and recyclable g-C3N4/Fe3O4/porous ruthenium nanocatalyst for the photocatalytic degradation of water-soluble aromatic amines and azo dyes. RSC Adv., 10, 6043, 2020.
168. Zhang, M., Zhang, Y., Tang, L., Zeng, G., Wang, J., Zhu, Y., Feng, C., Deng, Y., He, W., Ultrathin Bi2WO6 nanosheets loaded g-C3N4 Quantum Dots: a direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation. J. Colloid Interf. Sci., 539, 654–664, 2019.
169. Zhou, L., Tian, Y., Lei, J., Wang, L., Liu, Y., Zhang, J., Self-modification of g-C3N4 with its quantum dots for enhanced photocatalytic activity. Catal. Sci. Technol., 8, 2617–2623, 2018.
170. Lin, X., Xu, D., Zheng, J., Song, M., Che, G., Wang, Y., Yang, Y., Liu, C., Zhao, L., Chang, L., Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nano heterostructures with enhanced visible-light photo-catalytic activity. J. Alloys Compd., 688-B, 891–898, 2016.
171. Lin, X., Xu, D., Zhao, R., Xi, Y., Zhao, L., Song, M., Zhai, H., Che, G., Chang, L., Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light. Sep. Purif. Technol., 178, 163–168, 2017.
172. Su, Y., Sun, B., Chen, S., Yu, H., Liu, J., Fabrication of graphitic-C3N4 quantum dots coated silicon nanowire array as a photoelectrode for vigorous degradation of 4-chlorophenol. RSC Adv., 7, 14832–14836, 2017.
173. Wang, H., Yuan, X., Wang, H., Chen, X., Wu, Z., Longbo Jiang, L., Xiong, W., Zeng, G., Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance. Appl. Catal. B: Environ., 193, 36–46, 2016.
174. Patel, J., Singh, A.K., Carabineiro, S.A.C., Assessing the photocatalytic degradation of fluoroquinolone norfloxacin by Mn:ZnS quantum dots: kinetic study, degradation pathway and influencing factors. Nanomaterials, 10, 964, 2020.
175. Nawi, M.A. and Sabar, S., Sheilatina, Photocatalytic decolourisation of reactive Red 4 dye by an immobilised TiO2/chitosan layer by layer system. J. Colloid Interf. Sci., 372, 1, 80–87, 2012.
176. Nyamukamba, P., Moloto, M.J., Mungondori, H., Visible light-active CdS/TiO2 hybrid nanoparticles immobilized on polyacrylonitrile membranes for the photodegradation of dyes in water. J. Nanotechnol., 2019, 10, 2019.
177. Jbeli, A., Hamden, Z., Bouattour, S., Ferraria, A.M., Conceição, D.S., Ferreira, L.F.V., Chehimi, M.M., Rego, A.M.B.d., Vilar, M.R., Boufi, S., Chitosan-Ag-TiO2 films: an effective photocatalyst under visible light. Carbohydr. Polym., 199, 31–40, 2018.
178. Zhu, H., Jiang, R., Fu, Y., Guan, Y., Yao, J., Xiao, L., Zeng, G., Effective photo-catalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films undersimulated solar irradiation. Desalination, 286, 41–48, 2012.
179. Jana, B., Bhattacharyya, S., Patra, A., Conjugated polymer P3HT-Au hybrid nanostructures for enhancing photocatalytic activity. Phys. Chem. Chem. Phys., 17, 15392–15399, 2015.
180. Zhang, J., Li, L., Wang, S., Huang, T., Hao, Y., Qi, Y., Multi-mode photocatalytic degradation and photocatalytic hydrogen evolution of honeycomb-like three-dimensionally ordered macroporous composite Ag/ZrO2. RSC Adv., 6, 13991–14001, 2016.
181. Ray, C. and Pal, T., Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A, 5, 9465–9487, 2017.
182. Park, S.J., Das, G.S., Schütt, F., Adelung, R., Mishra, Y.K., Tripathi, K.M., Kim, T.Y., Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Materials, 11, 8, 2019.
183. Rhaman, Md. M., Ganguli, S., Bera, S., Rawal, S.B., Chakraborty, A.K., Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: mechanistic inside and photocatalysis pathway. J. Water Process Eng., 36, 101256, 2020.
184. Hussain, M., Sun, H., Karim, S., Nisar, A., Khan, M., Haq, A.U., Iqbal, M., Ahmad, M., Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide. J. Nanopart. Res., 18, 95, 2016.
185. Zhao, Y., Zhang, Y., Liu, A., Wei, Z., Liu, S., Construction of three-dimensional hemin-functionalized graphene hydrogel with high mechanical stability and adsorption capacity for enhancing photodegradation of methylene blue. ACS Appl. Mater. Inter., 9, 4006–4014, 2017.
186. Chen, D.-D., Yi, X.-H., Zhao, C., Fu, H., Wang, P., Wang, C.-C., Polyaniline modified MIL-100(Fe) for enhanced photocatalytic Cr (VI) reduction and tetracycline degradation under white light. Chemosphere, 245, 125659, 2020.
187. Sharma, P., Kumar, N., Chauhan, R., Singh, V., Srivastava, V.C., Bhatnagar, R., Growth of hierarchical ZnO nano flower on large functionalized rGO sheet for superior photocatalytic mineralization of antibiotic. Chem. Eng. J., 392, 123746, 2020.
188. Lv, S.-W., Liu, J.-M., Zhao, N., Li, C.-Y., Wang, Z.-H., Wang, S., Benzothiadiazole functionalized Co-doped MIL-53-NH with electron deficient units for enhanced photocatalytic degradation of bisphenol A and ofloxacin under visible light. J. Hazard. Mater., 387, 122011, 2020.
189. Jia, Z., Lyu, F., Zhang, L.C., Zeng, S., Liang, S.X., Li, Y.Y., Lu, J., Pt nanoparticles decorated heterostructured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light. Sci. Rep., 9, 7636, 2019.
190. Alam, U., Fleisch, M., Kretschmer, I., Bahnemann, D., Muneer, M., One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: an efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Appl. Catal. B: Environ., 218, 758–769, 2017.
191. Joice, J.A.I., Aishwarya, S., Sivakumar, T., Nano structured Ni and Ru impregnated TiO2 photocatalysts: synthesis, characterization and photocatalytic degradation of neonicotinoid insecticides. J. Nanosci. Nanotechnol., 19, 2575–2589, 2019.
192. Nuengmatcha, P., Chanthai, S., Mahachai, R., Oh, W.-C., Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dyes Pigm., 134, 487–497, 2016.
193. Rabbani, M., Bathaee, H., Rahimi, R., Maleki, A., Photocatalytic degradation of p-nitrophenol and methylene blue using Zn-TCPP/Ag doped mesoporous TiO2 under UV and visible light irradiation. Desalination Water Treat., 57, 53, 1–9, 2016.
194. Djouadi, L., Khalaf, H., Boukhatem, H., Boutoumi, H., Kezzime, A., Santaballa, J.A., Canle, M., Degradation of aqueous ketoprofen by heterogeneous photocatalysis using Bi2S3/TiO2-Montmorillonite nanocomposites under simulated solar irradiation. Appl. Clay Sci., 166, 27–37, 2018.
195. Zhou, X., Shao, C., Li, X., Wang, X., Guo, X., Liu, Y., Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. J. Hazard. Mater., 344, 113–122, 2018.
196. Khodadadi, M., Ehrampoush, M.H., Ghaneian, M.T., Allahresani, A., Mahvi, A.H., Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photo-catalytic degradation of tetracycline in simulated wastewater. J. Mol. Liq., 255, 224–232, 2018.
197. Jo, W.-K., Kumar, S., Isaacs, M.A., Lee, A.F., Karthikeyan, S., Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl. Catal. B: Environ., 201, 159–168, 2017.
198. Lu, X., Che, W., Hu, X., Wang, Y., Zhang, A., Deng, F., Luo, S., Dionysiou, D.D., The facile fabrication of novel visible-light-driven Z-scheme CuInS2/Bi2WO6 heterojunction with intimate interface contact by in situ hydrothermal growth strategy for extraordinary photocatalytic performance. Chem. Eng. J., 356, 819–829, 2019.
199. Umbreen, N., Sohni, S., Ahmad, I., Khattak, N.U., Gul, K., Self-assembled three-dimensional reduced graphene oxide-based hydrogel for highly efficient and facile removal of pharmaceutical compounds from aqueous solution. J. Colloid Interf. Sci., 527, 356–367, 2018.
200. Zhao, C., Liao, Z., Liu, W., Liu, F., Ye, J., Liang, J., Li, Y., Carbon quantum dots modified tubular g-C3N4 with enhanced photocatalytic activity for carbamazepine elimination: mechanisms, degradation pathway and DFT calculation. J. Hazard. Mater., 381, 120957, 2020.
201. Thakur, A., Kumar, P., Kaur, D., Devunuri, N., Sinha, R.K., Devi, P., TiO2 nanofibres decorated with green-synthesized PAu/Ag@CQDs for the efficient photocatalytic degradation of organic dyes and pharmaceutical drugs. RSC Adv., 10, 8941, 2020.
202. Zhang, J., Yan, M., Yuan, X., Si, M., Jiang, L., Wu, Z., Wang, H., Zeng, G., Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation. J. Colloid Interface Sci., 529, 11–22, 2018.
203. Qu, Y., Xu, X., Huang, R., Qi, W., Su, R., He, Z., Enhanced photocatalytic degradation of antibiotics in water over functionalized N,S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight Irradiation. Chem. Eng. J., 382, 123016, 2020.
204. Liu, T., Sun, S., Zhou, L., Li, P., Su, Z., Wei, G., Polyurethane-supported graphene oxide foam functionalized with carbon dots and TiO2 particles for photocatalytic degradation of dyes. Appl. Sci., 9, 293, 2019.
205. Bhati, A., Anand, S.R., Kumar, G., Garg, A., Khare, P., Sonkar, S., K., Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting Mg-N-embedded carbon dots. ACS Sustainable Chem. Eng., 6, 7, 9246–9256, 2018.
206. Karimi, F., Rajabi, H.R., Kavoshi, L., Rapid sonochemical water-based synthesis of functionalized zinc sulfide quantum dots: study of capping agent effect on photocatalytic activity, Ultrason. Sonochem., 57, 139–146, 2019.
207. Neelgund, G.M. and Oki, A., Photocatalytic activity of CdS and Ag2S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes. Appl. Catal B., 110, 99–107, 2011.
208. Pan, D., Jiao, J., Li, Z., Guo, Y., Feng, C., Liu, Y., Wang, L., Wu, M., Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustainable Chem. Eng., 3, 10, 2405–2413, 2015.
209. Rajabi, H.R., Karimi, F., Kazemdehdashti, H., Kavoshi, L., Fast sonochemically-assisted synthesis of pure and doped zinc sulfide quantum dots and their applicability in organic dye removal from aqueous media. J. Photochem. Photobiol, B., 181, 98–105, 2018.
210. Rajabi H, R., Khani, O., Shamsipur, M., Vatanpour, V., High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J. Hazard. Mater., 250-251, 370–378, 2013.
211. Kumar, A., Sharma, G., Naushad, Mu., Al-Muhtaseb, A.H., García-Peñas, A., Mola, G.T., Si, C., Stadle, F.J., Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review. Chem. Eng. J., 382, 122937, 2020.
212. Zhang, Y., Yuan, K., Zhang, L., Micro/Nanomachines: from functionalization to sensing to removal. Adv. Mater. Technol., 4, 4, 1800636, 2019.
213. Ouyang, K., Dai, K., Chen, H., Huang, Q., Gao, C., Cai, P., Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation. Ecotoxicol. Environ. Saf., 136, 40–45, 2017.
214. Li, R., Ren, Y., Zhao, P., Wang, J., Liu, J., Zhang, Y., Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. J. Hazard. Mater., 365, 606–614, 2019.
215. Qi, K., Cheng, B., Yu, J., Ho, W., Review on the improvement of the photo-catalytic and antibacterial activities of ZnO. J. Alloys Compd., 727, 792–820, 2017.
216. Wang, W., Zhang, L., An, T., Li, G., Yip, H.Y., Wong, P.K., Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species. Appl. Catal. B: Environ., 108, 108–116, 2011.
217. Hou, X., Ma, H., Liu, F., Deng, J., Ai, Y., Zhao, X., Mao, D., Li, D., Liao, B., Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance. J. Hazard. Mater., 299, 59–66, 2015.
218. Vignesh, S., Muppudathi, A.L., Sundar, J.K., Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photo-catalytic and antibacterial activity. J. Mater. Sci.: Mater. Electron., 29, 10784–10801, 2018.
219. Song, M.Y., Jurng, J., Park, Y.-K., Kim, B.C., An aptamer cocktail-functionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria. J. Hazard. Mater., 318, 247–254, 2016.
220. Water, sanitation, hygiene and health: A primer for health professionals. World Health Organisation, WHO/CED/PHE/WSH/19.149,36, 2019.
221. Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S., A review on nanomaterials for environmental remediation. Energy Environ. Sci., 5, 8075, 2012.
222. Patra, S., Roy, E., Madhuri, R., Sharma, P.K. et al., A technique comes to life for security of life: the food contaminant sensors, in: Nanobiosensors, A. Grumezescu (Ed.), pp. 713–772, Elsevier, Academic Press, USA, 2017.
223. Lu, F. and Astruc, D., Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev., 408, 213180, 2020.
224. Roy, E., Patra, S., Karfa, P., Madhuri, R., Sharma, P.K. et al., Role of magnetic nanoparticles in providing safe and clean water to each individual, in: Complex Magnetic Nanostructures: Synthesis, Assembly and Applications, S.K. Sharma (Ed.), pp. 281–316, Springer International Publishing AG, Springer, Cham, 2017.
1 *Corresponding author: ajayaksingh_au@yahoo.co.in