Читать книгу Environmental and Agricultural Microbiology - Группа авторов - Страница 30

References

Оглавление

1. Halstead, N.T., Hoover, C.M., Arakawa, A., Civitello, D.J., De Leo, G.A., Gambhir, M., Johnson, S.A., Jouanard, N., Lorenz, K.A., McMahon, T.A., Ndione, R.A., Nguyen, K., Raffel, T.R., Remais, J.V., Riveau, G., Sokolow, S.H., Rohr, J.R., Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat. Commun., 9, 837, 2018.

2. Wimalawansa, S.A. and Wimalawansa, S.J., Protection of Watersheds, and Control and Responsible use of Fertiliser to Prevent Phosphate Eutrophication of Reservoirs. IJRES., 1, 1, 2015.

3. Carpenter, S.R., Eutrophication of aquatic ecosystems: biostability and soil phosphorus. Proc. Natl. Acad. Sci., 102, 10002, 2005.

4. Lewis, W.M., Wurtsbaugh, W.A., Paerl, H.W., Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ. Sci. Technol., 45, 10300, 2011.

5. Ortiz-Hernández, M.L., Sánchez-Salinas, E., Dantán-González, E., María Luisa Castrejón-Godínez, M.L., Pesticide Biodegradation: Mechanisms, Genetics and Strategies to Enhance the Process, in: Biodegradation - Life of Science, R. Chamy and F. Rosenkranz (Eds.), pp. 251–287, IntechOpen, United Kingdom, 2013.

6. Mahmood, I., Imadi, S.R., Shazadi, K., Gul, A., Hakeem, K.R., Effects of Pesticides on Environment, in: Plant, Soil and Microbes, K.R. Hakeem (Eds.), pp. 253–269, Springer, Switzerland, 2016.

7. Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., Wehrli, B., The Challenge of Micropollutants in Aquatic Systems. Science, 313, 1072, 2006.

8. Kumar, P.S., Carolin, C.F., Varjani, S.J., Pesticides Bioremediation, in: Bioremediation: Applications for Environmental Protection and Management, Energy, Environment, and Sustainability, S.J. Varjani (Eds.), pp. 197–222, Springer Nature, Singapore, 2018.

9. United States Environmental Protection Agency(n.d) What are Pesticides? from https://www.epa.gov/pesticides.

10. Buchel, K.H. (Ed.), (translated by Holmwood G), Chemistry of Pesticides, Wiley Interscience Publications, New York, 1983.

11. Badii, M. and Landeros, J., Plaguicidas que afectan la saludhumana y la sustentabilidad, pp. 4–19, CULCYT/ Toxicología De Plaguicidas, Mexico, 2007.

12. Ortiz-Hernández, M.L., Biodegradación de plaguicidasorganofosforados por nuevasbacteriasaisladas del suelo, Thesis, Biotechnology PhD, Universidad Autónoma del Estado de Morelos, México, 2002.

13. Kurade, M.B., Kim, J.R., Govindwar, S.P., Jeon, B.H., Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal. Res., 20, 126, 2016.

14. Rani, M., Shanker, U., Jassal, V., Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J. Environ. Manage., 190, 208, 2017.

15. Nayak, S.K., Dash, B., Baliyarsingh, B., Microbial Remediation of Persistent Agro-chemicals by Soil Bacteria: An Overview, in: Microbial Biotechnology, J.K. Patra (Eds.), pp. 275–301, Springer, Singapore, 2018.

16. Benefits of pesticides and crop protection chemicals, in: Crop life America, http://www.croplifeamerica.org/crop-protection/benefits.

17. Cunningham, M., Use of pesticides: benefits and problems associated with pesticides, in: Education portal, n.d, http://education-portal.com/academy/lesson/use-ofpesticides-benefits-and-problems-associated-with-pesticides.html.

18. Warsi, F., How do pesticides affect ecosystems, in: Pesticides, http://farhanwarsi.tripod.com/id9.html.

19. Helfrich, L.A., Weigmann, D.L., Hipkins, P., Stinson, E.R., Pesticides and aquatic animals: a guide to reducing impacts on aquatic systems, Virginia Polytechnic Institute and State University, United States, 2009, https://pubs.ext.vt.edu/420/420-013/420-013.html.

20. Rohr, J.R., Schotthoefer, A.M., Raffel, T.R., Carrick, H.J., Halstead, N., Hoverman, J.T., Johnson, C.M., Johnson, L.B., Lieske, C., Piwoni, M.D., Schoff, P.K., Beasley, V.R., Agrochemicals increase trematode infections in a declining amphibian species. Nature, 455, 1235, 2008.

21. Brammall, R.A. and Higgins, V.J., The effect of glyphosate on resistance of tomato to Fusarium crown and root rot disease and on the formation of host structural defensive barriers. Can. J. Bot., 66, 1547, 1988.

22. Fletcher, J.S., Pfleeger, T.G., Ratsch, H.C., Potential environmental risks associated with the new sulfonylurea herbicides. Environ. Sci. Technol., 27, 2250, 1993.

23. Santos, A. and Flores, M., Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett. Appl. Microbiol., 20, 349, 1995.

24. Lang, M. and Cai, Z., Effects of chlorothalonil and carbendazim on nitrification and denitrification in soils. J. Environ. Sci., 21, 458, 2009.

25. Lah, K., Effects of pesticides on human health, in: Toxipedia, http://www.toxipedia.org/display/toxipedia/Effects+of+Pesticides+on+Human+Health.2011.

26. Hicks, B., Agricultural pesticides and human health, National Association of GeoscienceTeachers, http://serc.carleton.edu/NAGTWorkshops/health/case_studies/pesticides.html., United States, 2013.

27. Spear, R., Recognised and possible exposure to pesticides, in: Handbook of pesticide toxicology, W.J. Hayes and E.R. Laws (Eds.), pp. 245–274, Academic, San Diego, CA, 1991.

28. Jabbar, A. and Mallick, S., Pesticides and environment situation in Pakistan (Working Paper Series No. 19), Sustainable Development Policy Institute, Pakistan, 1994.

29. Boudh, S. and Singh, J.S., Pesticide Contamination: Environmental Problems and Remediation Strategies, in: Emerging and Eco-Friendly Approaches for Waste Management, R.N. Bhargava and P. Chowdhary (Eds.), pp. 245–269, Springer Nature, Singapore, 2019.

30. Culliney, T.W., Pimentel, D., Pimentel, M.H., Pesticides and natural toxicants in foods. Agric. Ecosyst. Environ., 41, 297–320, 1992.

31. Megharaj, M., Venkateswarlu, K., Rao, S., Metabolism of Monocrotophos and Quinalphos by Algae Isolated from Soil. Bull. Environ. Contam. Toxicol., 39, 251, 1987.

32. Megharaj, M., Madhavi, D.R., Sreenivasulu, C., Umamaheswari, A., Venkateswarlu, K., Biodegradation of Methyl Parathion by Soil Isolates of Microalgae and Cyanobacteria. Bull. Environ. Contam. Toxicol., 53, 292, 1994.

33. Cáceres, T.P., Megharaj, M., Naidu, R., Biodegradation of the Pesticide Fenamiphos by Ten Different Species of Green Algae and Cyanobacteria. Curr. Microbiol., 57, 643, 2008.

34. Petroutsos, D., Wang, J., Katapodis, P., Kekos, D., Sommerfeld, M., Hu, Q., Toxicity and metabolism of p-chlorophenol in the marine microalga Tetraselmis marina. Aquat. Toxicol., 85, 192, 2007.

35. Yang, S., Wu, R.S.S., Kong, R.Y.C., Biodegradation and enzymatic responses in the marine diatom Skeletonemacostatum upon exposure to 2,4-dichlorophenol. Aquat. Toxicol., 59, 191, 2002.

36. Ghasemi, Y., Rasoul-Amini, S., Fotooh-Abadi, E., Review: The Biotransformation, Biodegradation and Bioremediation of Organic Compounds by Microalgae. J. Phycol., 47, 969, 2011.

37. Kuritz, T. and Wolk, C.P., Use of Filamentous Cyanobacteria for Biodegradation of Organic Pollutants. Appl. Environ. Microbiol., 61, 234, 1995.

38. El-Bestawy, E., El-Salam, Z., Mansy, E.R.H., Potential Use of Environmental Cyanobacterial Species in Bioremediation of Lindane-Contaminated Effluents. Int. Biodeterioration. Biodegrad., 59, 180, 2007.

39. Dosnon-Olette, R., Trotel-Aziz, P., Couderchet, M., Eullaffroy, P., Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere., 79, 117, 2010.

40. Zhang, S., Qiu, C.B., Zhou, Y., Jin, Z.P., Yang, H., Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga. Chlamydomonas reinhardtii. Ecotoxicology., 20, 337, 2012.

41. Singh, D.P., Khattar, J.I.S., Nadda, J., Singh, Y., Garg, A., Kaur, N., Gulati, A., Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ. Sci. Pollut. Res., 18, 1351, 2011.

42. Singh, D.P., Khattar, J.I.S., Kaur, M., Kaur, G., Gupta, M., Singh, Y., Anilofos Tolerance and Its Mineralization by the Cyanobacterium Synechocystis sp. Strain PUPCCC 64. PLoS ONE., 8, e53445, 2013.

43. Jin, Z.P., Luo, K., Zhang, S., Zheng, Q., Yang, H., Bioaccumulation and catabolism of prometryne in green algae. Chemosphere., 87, 278, 2012.

44. Kumar, M.S., Aabra, A.N., Min, B., Ei-Dalatony, M.M., Xiong, J., Thajuddin, N., Lee, D.S., Jeon, B.H., Insecticide induced biochemical changes in freshwater microalga. Chlamydomonas mexicana. Environ. Sci. Pollut. Res., 23, 1091, 2016.

45. Tiwari, B., Chakrabortya, S., Srivastava, A.K., Mishra, A.K., Biodegradation and rapid removal of methyl parathion by the paddy field cyanobacterium. Fischerella sp. Algal. Res., 25, 285, 2017.

46. Li, X., Schuler, M.A., Berenbaum, M.R., Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann. Rev. Entomol., 52, 231, 2007.

47. Ortiz-Hernández, M.L., Sánchez-Salinas, E., Olvera-Velona, A., Folch-Mallol, J.L., Pesticides in the Environment: Impacts and its Biodegradation as a Strategy for Residues Treatment, in: Pesticides - Formulations, Effects, Fate, M. Stoytcheva (Ed.), pp. 551–574, IntechOpen, United Kingdom, 2011.

48. Thengodkar, R.R. and Sivakami, S., Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation, 21, 637, 2010.

49. Paliwal, R., Gusain, P., Kaphaliya, B., Uniyal, S., Algal Potential for Inorganic and Organic Pollutants Decontamination, in: Water Biology, D.R. Khanna and R. Bhutiani (Eds.), pp. 309–317, Discovery Publishing House Pvt. Ltd., New Delhi, 2018.

50. Chino-Flores, C., Dantán-González, E., Vázquez-Ramos, A., Tinoco-Valencia, R., Díaz-Méndez, R., Sánchez-Salinas, E., Castrejón-Godínez, M.L., Ramos-Quintana, F., Ortiz-Hernández, M.L., Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides. Biodegradation, 23, 387, 2012.

51. Mulbry, W.W. and Karns, J.S., Parathion hydrolase specified by the Flavobacterium opd gene: Relationship between the gene and protein. J. Bacteriol., 171, 6740, 1989.

52. Ortiz-Hernández, M.L., Quintero-Ramírez, R., Nava-Ocampo, A.A., Bello-Ramírez, A.M., Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fundam. Clin. Pharmacol., 17, 717, 2003.

53. Zhang, R., Cui, Z., Jiang, J., Gu, X., Li, S., Diversity of organophosphorus pesticides degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can. J. Microbiol., 5, 337, 2005.

54. Chungjatupornchai, W. and Fa-Aroonsawat, S., Biodegradation of Organophosphate Pesticide Using Recombinant Cyanobacteria with Surfaceand Intracellular-Expressed Organophosphorus Hydrolase. J. Microbiol. Biotechnol., 18, 946, 2008.

55. Mittler, R., Oxidative stress, antioxidants and stress to tolerance. Trends. Plant. Sci., 7, 405, 2002.

56. Maurino, V.G. and Flugge, U., Experimental systems to assess the effects of reactive oxygen species in plant tissues. Plant. Signal. Behav., 3, 923, 2008.

57. Alscher, R.G., Erturk, N., Heath, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 53, 1331, 2002.

58. Kumari, N., Narayan, O.P., Rai, L.C., Understanding butachlor toxicity in Aulosirafertilissima using physiological, biochemical and proteomic approaches. Chemosphere., 77, 1501, 2009.

59. Kumari, N., Singh, V.K., Narayan, O.P., Rai, L.C., Toxicity of butachlor assessed by molecular docking to NusB and GroES protein. Onl. J. Bioinform., 12, 289, 2011.

60. Agrawal, C., Sen, S., Singh, S., Rai, S., Singh, P.K., Singh, V.K., Rai, L.C., Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N (2)-fixing Anabaena spp. J. Proteomics., 96, 271, 2014.

61. Agrawal, C., Sen, S., Yadav, S., Rai, S., Rai, L.C., A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli. PLoS ONE., 10, e0137744, 2015.

62. Gupta, S.K., Shriwastav, A., Kumari, S., Ansari, F.A., Malik, A., Bux, F., Phycoremediation of Emerging Contaminants, in: Algae and Environmental Sustainability, Developments in Applied Phycology, vol. 7, B. Singh (Eds.), pp. 129–146, Springer, India, 2015.

63. Esperanza, M., Seoane, M., Rioboo, C., Herrero, C., Cid, A., Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study. Sci. Total. Environ., 554, 237, 2016.

64. Hemschemeier, A., Casero, D., Liu, B., Benning, C., Pellegrini, M., Happe, T., Merchant, S.S., Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia. Plant Cell., 25, 3186, 2013.

65. Tiwari, B., Verma, E., Chakrabortya, S., Srivastava, A.K., Mishra, A.K., Tolerance strategies in cyanobacterium Fischerella sp. under pesticide stress and possible role of a carbohydrate-binding protein in the metabolism of methyl parathion (MP). Int. Biodeterioration. Biodegrad., 127, 217, 2018.

66. Corner, T.R., Synergism in the inhibition of Bacillus subtilis by combinations of lipophilic weak acids and fatty alcohols. Antimicrob. Agents. Chemother., 19, 1082, 1981.

67. Horvath, R.S., Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev., 36, 146, 1972.

68. Rosenzweig, W.D. and Stotzky, G., Influence of environmental factors on antagonism of fungi by bacteria in soil: nutrient levels. Appl. Environ. Microbiol., 39, 354, 1980.

69. Chekroun, K.B., Sánchez, E., Baghour, M., The role of algae in bioremediation of organic pollutants. Int. Res J. Public. Environ. Health., 1, 19, 2014.

70. Kobayashi, H. and Rittmann, B.E., Microbial removal of hazardous organic compounds. Environ. Sci. Technol., 16, 170A, 1982.

71. Gibson, D.T., Microbial transformation of aromatic pollutants, in: Aquatic pollutants, O. Hutzinger, L.H. Van Lelyveld, B.C.J., Zoeteman (Eds.), Pergamon Press, New York, 1978.

72. Steen, W.C., Paris, D.F., Baughman, G.L., Effects of sediment sorption on microbial degradation of toxic substances. Contam. Sediment., 1, 477, 1980.

73. Leahy, J.G. and Colwell, R.R., Microbial degradation of hydrocarbons in the environment. Microbiol. Rev., 54, 305, 1990.

74. Colwell, R. and Sayler, G., Microbial degradation of industrial chemicals. Water. Pollut. Microbiol., 2, 111, 1978.

75. Singh, D.K., Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J. Microbiol., 48, 35, 2008.

76. Sethunathan, N., Megharaj, M., Chen, Z.L., Williams, B.D., Lewis, G., Naidu, R., Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfansulfate, in liquid medium and soil. J. Agric. Food. Chem., 52, 3030, 2004.

77. Megharaj, M., Kantachote, D., Singleton, I., Naidu, R., Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ. Pollut., 109, 35, 2000.

1 * Corresponding author: nchaurasia@nehu.ac.in; cyanoneha@gmail.com

Environmental and Agricultural Microbiology

Подняться наверх