Читать книгу Environmental and Agricultural Microbiology - Группа авторов - Страница 93
References
Оглавление1. Roopan, S.M., Surendra, T.V. et al., Preparation and Properties of Biopolymers: A Critical Review, in: Handbook of Polymers for Pharmaceutical Technologies: Structure and Chemistry, V.K. Thakur and M.K. Thakur (Eds.), vol. 3, pp. 541–553, Wiley-Scrivener, Hoboken, NJ, USA, 2015.
2. Lendlein, A. and Sisson, A. (Eds.), Handbook of Biodegradable Polymers: Isolation, Synthesis, Characterization and Applications, Wiley-VCH, Weinheim, Germany, 2011.
3. Kutz, M. (Ed.), Applied Plastics Engineering Handbook: Processing, Materials, and Applications, 2 edition, Elsevier, William Andrew, Norwich, New York, 2016.
4. Parthiban, A., Monomers and Polymers Derived from Renewable or Partially Renewable Resources, in: Synthesis and Applications of Copolymers, A. Parthiban, (Ed.), pp. 101–124, Wiley-VCH: Weinheim, Germany, 2014.
5. a) Iwata, T., Biodegradable and bio-based polymers: Future prospects of ecofriendly plastics. Angew. Chem., 54, 3210–3215, 2015. b) Ali, M.A., Kaneko, T., Syntheses of Aromatic/Heterocyclic Derived Bioplastics with High Thermal/Mechanical Performance. Ind Eng Chem Res., 58, 15958, 2019.
6. Ali, M.A. and Kaneko, T., Microbe-Derived Itaconic Acid: Novel Route to Biopolyamides. Microbial Applications, in: Microbial Applications, vol. 2, V. Kalia (Ed.), pp. 279–289, Springer, Cham, 2017.
7. Yamano, N., Kawasaki, N., Ida, S., Nakayama, Y., Nakayama, A., Biodegradation of polyamide 4 in vivo. Polym. Degrad. Stab., 137, 281, 2017.
8. van Es, D.S., van der Klis, F., Knoop, R.J.I., Molenveld, K., Sijtsma, L., van Haveren, J., Other Polyesters from Biomass Derived Monomers, in: Bio-Based plastics: Materials and Applications, S. Kabasci (Ed.), pp. 241–274, John Wiley & Sons Ltd., Sussex, United Kingdom, 2013.
9. Kobayashi, S. and Mullen, K., Encyclopedia of polymeric nanomaterials, in: Polyamide Syntheses, M.A. Ali (Ed.), pp. 1750–1762, Springer Berlin, Heidelberg, 2015.
10. Ali, M.A., Tateyama, S., Kaneko, T., Synthesis of rigid-rod but degradable biopolyamides from itaconic acid with aromatic diamines. Polym. Degrad. Stab., 109, 367, 2014.
11. Ali, M.A., Tateyama, S., Oka, Y., Okajima, M., Kaneko, D., Kaneko, T., High-performance biopolyamides derived from itaconic acid and their environmental corrosion. Macromolecules, 46, 3719, 2013.
12. Zheng, Y., Yanful, E.K., Amarjeet, S., Bassi, A.S., A Review of Plastic Waste Biodegradation. Crit. Rev. Biotechnol., 25, 243, 2005.
13. Tokiwa, Y., Calabia, B.P., Ugwu, C.U., Aiba, S., Biodegradability of Plastics. Int. J. Mol. Sci., 10, 3722, 2009.
14. Dubois, P., Coulembier, O., Raquez, J.M. (Eds.), Handbook of Ring-Opening Polymerization, Wiley-VCH, Weinheim, Germany, 2011.
15. Misra, M. and Panday, J.K. (Eds.), Biocomposites: Design and Mechanical Performance, woodhead publishing, Cambridge, UK, 2015.
16. Lima, U.A., Aquarone, E., Borzani, W., Schmidell, W., Biotechnologia Industrial Processos Fermentativos e Enzimaticos, pp. 101–124, Editora Edgard Blücher Ltda, São Paulo, 2001.
17. Komesu, A., Oliveira, J.A.R.d., Martins, L.H.d.S., Wolf Maciel, M.R., Maciel Filho, R., Lactic acid production to purification: A review. BioRes., 12, 4364, 2017.
18. Wee, Y., Kim, J., Ryu, H., Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol., 44, 163, 2006.
19. Abdel-Rahman, M.A. and Sonomoto, K., Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol., 236, 176, 2016.
20. Wee, Y., Kim, H., Yun, J., Ryu, H., Pilot-scale lactic acid production via batch culturing of Lactobacillus sp. RKY2 using corn steep liquor as a nitrogen source. Food Technol. Biotechnol., 44, 293, 2006.
21. Drumright, R.E., Gruber, P.R., Henton, D.E., Polylactic acid technology. Adv. Mater., 23, 1841, 2000.
22. Puaux, J., Banu, I., Nagy, I., Bozga, G., A study of L-Lactide ring-opening polymerization kinetics. Macromol. Symp., 259, 318, 2007.
23. Williams, D.F., Enzymatic hydrolysis of polylactic acid. Eng. Med., 10, 5, 1981.
24. Vroman, I. and Tighzert, L., Biodegradable polymers. Materials, 2, 307, 2009.
25. Luckachan, G.E. and Pillai, C.K.S., Chitosan/oligo L-lactide graft copolymers: Effect of hydrophobic side chains on the physic-chemical properties and biodegradability. Carbohyd. Polym., 64, 254, 2006.
26. Lee, J.C., Moon, J.H., Jeong, J., Kim, M.Y., Kim, B.M., Choi, M.C., Kim, J.R., Ha, C.S., Biodegradability of poly(lactic acid) (PLA)/Lactic acid(LA) blends using anaerobic disaster sludge. Macromol. Res., 24, 741, 2016.
27. Fukushima, K., Abbate, C., Tabuani, D., Gennari, M., Camino, G., Biodegradation of poly (lactic acid) and its nanocomposites. Polym. Degrad. Stab., 94, 1646, 2009.
28. Sun, X., Xu, C., Wu, G., Ye, Q., Wang, C., Poly(lactic acid-co-glycolic acid): applications and future prospects for periodontal tissue regenerations. Polymers, 9, 189, 2017.
29. Tamai, H., Igaki, K., Kyo, E., Kosuga, K., Kawashima, A., Matsui, S., Komori, H., Tsuji, T., Motohara, S., Uehata, H., Initial and 6-months results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 102, 399, 2000.
30. Rydz, J., Sikorska, W., Kyulavska, M., Christova, D., Polyester-Based (Bio) degradable Polymers as Environmentally Friendly Materials for Sustainable Development. Int. J. Mol. Sci., 16, 564, 2015.
31. Amass, W., Amass, A., Tighe, B., A review of biodegradable polymers: use, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradable studies. Polym. Int., 47, 89, 1998.
32. Amos, D.A. and McInerney, M.J., Poly-β-hydroxyalkanoates in synthrophomonas wolfei. Arch. Microbiol., 152, 172, 1989.
33. Dunn, B., Kamath, H., Tarascon, J.M., Electrical energy storage for the grid: a battery of choices. Science, 334, 928, 2011.
34. Koller, M., Salerno, A., Braunegg, G., Polyhydroxyalkanoates: Basics, Production and Applications of Microbial Biopolyesters, in: Bio-Based plastics: Materials and Applications, S. Kabasci (Ed.), pp. 137–170, John Wiley & Sons Ltd., Sussex, United Kingdom, 2013.
35. Anushri, S. and Archana, T., Polyhydroxyalkonates: Green Plastics of the Future. Int. J. Biomed. Adv. Res., 2, 356, 2011.
36. Braunegg, G., Bona, R., Schellauf, F., Wallner, E., Polyhydroxyalkanoates (PHAs): Sustainable Biopolyester Production. Polimery, 47, 13, 2002.
37. Kai, D. and Loh, X.J., Polyhydroxyalkanotes: Chemical Modifications Toward Biomedical Applications. Acs Sustain Chem Eng., 2, 106, 2014.
38. Ikada, Y. and Tsuji, H., Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun., 21, 117, 2000.
39. Jendrossek, D. and Handrick, R., Microbial degradation of Polyhydroxyalkanoates. Annu. Rev. Microbiol., 56, 403, 2002.
40. Knoll, M., Hamm, T.M., Wagner, F., Martinez, V., Pleiss, J., The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinformatics, 10, 89, 2009.
41. Mergaert, J. and Swings, J., Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J. Ind. Microbiol., 17, 463, 1996.
42. Madison, L.L. and Huisman, G.W., Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev., 63, 21, 1999.
43. Eggers, J. and Steinbüchel, A., Poly (3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. J. Bacteriol., 195, 3213, 2013.
44. Handrick, R., Reinhardt, S., Focarete, M.L., Scandola, M., Adamus, G., Kowalczuk, M., Jendrossek, D., A new type of thermoalkalophilic hydrolase of Paucimonas lemoignei with high specificity for amorphous polyesters of short chain-length hydroxyalkanoic acids. J. Biol. Chem., 276, 36215, 2001.
45. Tseng, C.L., Chen, H.J., Shaw, G.C., Identification and characterization of the Bacillus thuringiensis phaZ gene, encoding new intracellular poly-3-hydroxybutyrate depolymerase. J. Bacteriol., 188, 7592, 2006.
46. Leathers, T.D., Govind, N.S., Greene, R.V., Biodegradation of poly(3-hydroxybutyrateco-3-hydroxyvalerate) by a tropical marine bacterium, Pseudoalteromonas sp. NRRL B-30083. J. Polym. Environ., 8, 119, 2000.
47. Kasuya, K., Mitomo, H., Nakahara, M., Akiba, A., Kudo, T., Doi, Y., Identification of a marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. Biomacromolecules, 1, 194, 2000.
48. Kita, K., Mashiba, S., Nagita, M., Ishimaru, K., Okamoto, K., Yanase, H., Cloning of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, Alcaligenes faecalis AE122, and characterization of its gene product. Biochim. Biophys. Acta., 1352, 113, 1997.
49. Patel, M., Ou, M., Ingram, L. et al. Fermentation of sugar cane bagasse hemicellulose hydrolysate to l(+)-lactic acid by a thermotolerant acidophilic Bacillus sp.**. Biotechnology Letters, 26, 865, 2004.
50. Bischoff, K.M., Liu, S., Hughes, S.R. et al. Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnol Lett., 32, 823, 2010.
51. Ouyang, J., Cai, C., Chen, H. et al. Efficient Non-sterilized Fermentation of Biomass-Derived Xylose to Lactic Acid by a Thermotolerant Bacillus coagulans NL01. Appl Biochem Biotechnol., 168, 2387, 2012.
52. Yun, J. -S., Wee, Y. -J., Ryu, H.-W., Production of optically pure l(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1, Enzyme and Microbial Technology, 33, 4, 416, 2003.
1 * Corresponding author: asif.alidu@gmail.com
2 †Equal contribution as first author