Читать книгу Nanotechnology in Plant Growth Promotion and Protection - Группа авторов - Страница 45

References

Оглавление

1 Andersen, C.P., King, G., Plocher, M. et al. (2016). Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environmental Toxicology and Chemistry 35 (9): 2223–2229.

2 Aragay, G., Pino, F., and Merkoçi, A. (2012). Nanomaterials for sensing and destroying pesticides. Chemical Reviews 112 (10): 5317–5338.

3 Asli, S. and Neumann, P.M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment 32 (5): 577–584.

4 Bakshi, M., Liné, C., Bedolla, D.E. et al. (2019). Assessing the impacts of sewage sludge amendment containing nano‐TiO2 on tomato plants: a life cycle study. Journal of Hazardous Materials 369: 191–198.

5 Baranowska‐Wójcik, E., Szwajgier, D., Oleszczuk, P., and Winiarska‐Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health: a review. Biological Trace Element Research 193 (1): 118–129.

6 Barrena, R., Casals, E., Colón, J. et al. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75 (7): 850–857.

7 Barrios, A.C., Medina‐Velo, I.A., Zuverza‐Mena, N. et al. (2017). Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiology and Biochemistry 110: 100–107.

8 Bellani, L., Siracusa, G., Giorgetti, L. et al. (2020). TiO2 nanoparticles in a biosolid‐amended soil and their implication in soil nutrients, microorganisms and Pisum sativum nutrition. Ecotoxicology and Environmental Safety 190: 110095.

9 Boonyanitipong, P., Kositsup, B., Kumar, P. et al. (2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics 1 (4): 282–285.

10 Cai, F., Wu, X., Zhang, H. et al. (2017). Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact 5: 101–108.

11 Carlotti, M.E., Ugazio, E., Sapino, S. et al. (2009). Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radical Research 43 (3): 312–322.

12 Clément, L., Hurel, C., and Marmier, N. (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere 90 (3): 1083–1090.

13 CODATA‐VAMAS Working Group on the Description of Nanomaterials & Rumble, J. (2016). Uniform Description System for Materials on the Nanoscale, Version 2.0. http://doi.org/10.5281/zenodo.56720.

14 Cox, A., Venkatachalam, P., Sahi, S., and Sharma, N. (2016). Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiology and Biochemistry 107: 147–163.

15 Dalai, S., Pakrashi, S., Nirmala, M.J. et al. (2013). Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology 138–139: 1–11.

16 Demir, E., Kaya, N., and Kaya, B. (2014). Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology 38 (1): 31–39.

17  Dias, M.C., Santos, C., Pinto, G. et al. (2019). Titanium dioxide nanoparticles impaired both photochemical and non‐photochemical phases of photosynthesis in wheat. Protoplasma 256 (1): 69–78.

18 Du, W., Sun, Y., Ji, R. et al. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring 13 (4): 822–828.

19 Fan, R., Huang, Y.C., Grusak, M.A. et al. (2014). Effects of nano‐TiO2 on the agronomically‐relevant rhizobium–legume symbiosis. Science of the Total Environment 466–467: 503–512.

20 Faraz, A., Faizan, M., Fariduddin, Q., and Hayat, S. (2020). Response of titanium nanoparticles to plant growth: agricultural perspectives. In: Sustainable Agriculture Reviews, vol. 41 (eds. S. Hayat, J. Pichtel, M. Faizan and Q. Fariduddin), 101–110. Cham: Springer.

21 Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., and Fotovat, A. (2012). Impact of bulk and Nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146 (1): 101–106.

22 Feizi, H., Amirmoradi, S., Abdollahi, F., and Pour, S.J. (2013a). Comparative effects of Nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Research & Review in Biology 3 (4): 814–824.

23 Feizi, H., Kamali, M., Jafari, L., and Rezvani Moghaddam, P. (2013b). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare mill). Chemosphere 91 (4): 506–511.

24 Foltête, A.‐S., Masfaraud, J.‐F., Bigorgne, E. et al. (2011). Environmental impact of sunscreen nanomaterials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution 159 (10): 2515–2522.

25 Frazier, T.P., Burklew, C.E., and Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics 14 (1): 75–83.

26 Gao, F., Liu, C., Qu, C. et al. (2008). Was improvement of spinach growth by nano‐TiO2 treatment related to the changes of Rubisco activase? Biometals 21 (2): 211–217.

27 Gavazov, K.B., Hagarová, I., Halko, R., and Andruch, V. (2019). Recent advances in the application of nanoparticles in cloud point extraction. Journal of Molecular Liquids 281: 93–99.

28 George, J.M., Antony, A., and Mathew, B. (2018). Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta 185 (7): 358.

29 Ghosh, M., Bandyopadhyay, M., and Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81 (10): 1253–1262.

30 Giorgetti, L., Spanò, C., Muccifora, S. et al. (2019). An integrated approach to highlight biological responses of Pisum sativum root to nano‐TiO2 exposure in a biosolid‐amended agricultural soil. Science of the Total Environment 650: 2705–2716.

31 Gong, J., Sumathy, K., Qiao, Q., and Zhou, Z. (2017). Review on dye‐sensitized solar cells (DSSCs): advanced techniques and research trends. Renewable and Sustainable Energy Reviews 68: 234–246.

32 Guan, H., Chi, D., Yu, J., and Li, H. (2010). Dynamics of residues from a novel nano‐imidacloprid formulation in soyabean fields. Crop Protection 29 (9): 942–946.

33  Hagarová, I. (2017). Separation and quantification of metallic nanoparticles using cloud point extraction and spectrometric methods: a brief review of latest applications. Analytical Methods 9 (24): 3594–3601.

34 Hagarová, I. (2018). Current trends in cloud point extraction – utilizable in ultratrace analysis of metallic ions and metallic nanoparticles. Chemicke Listy 112 (2): 79–85.

35 Hagarová, I., Matúš, P., Bujdoš, M., and Kubová, J. (2012a). Analytical application of nano‐sized titanium dioxide for the determination of trace inorganic antimony in natural waters. Acta Chimica Slovenica 59 (1): 102–108.

36 Hagarová, I., Bujdoš, M., Matúš, P., and Čanecká, L. (2012b). The use of two extraction procedures in connection with electrothermal atomic absorption spectrometry for speciation of inorganic antimony in natural waters. Chemicke Listy 106 (2): 136–142.

37 Hagarová, I., Bujdoš, M., and Matúš, P. (2012c). Platinum removal from aqueous solutions by sorption onto titanium dioxide. Fresenius Environmental Bulletin 21 (11c): 3568–3574.

38 Hagarová, I., Bujdoš, M., and Matúš, P. (2013). The use of titanium dioxide for separation/preconcentration of aluminium, antimony and platinum species in synthetic and natural waters before their determination by atomic spectrometry methods. In: Titanium Dioxide: Applications, Synthesis and Toxicity (ed. P.K. Jha), 167–209. New York: Nova Science Publishers, Inc.

39 Haghighi, M. and Teixeira da Silva, J.A. (2014). The effect of N‐TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology 17 (4): 221–227.

40 Han, C., Lalley, J., Namboodiri, D. et al. (2016). Titanium dioxide‐based antibacterial surfaces for water treatment. Current Opinion in Chemical Engineering 11: 46–51.

41 Hong, F., Zhou, J., Liu, C. et al. (2005). Effect of nano‐TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research 105 (1): 269–279.

42 Hsiao, I.‐L. and Huang, Y.‐J. (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Science of the Total Environment 409 (7): 1219–1228.

43 Hylmö, B. (1955). Passive components in the ion absorption of the plant. I. The zonal ion and water absorption in Brouwer's experiments. Physiologia Plantarum 8 (2): 433–449.

44 Hylmö, B. (1958). Passive components in the ion absorption of the plant II. The zonal water flow, ion passage, and pore size in roots of Vicia Faba. Physiologia Plantarum 11 (2): 382–400.

45 Iswarya, V., Bhuvaneshwari, M., Alex, S.A. et al. (2015). Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: chlorella sp. Aquatic Toxicology 161: 154–169.

46 Jaberzadeh, A., Moaveni, P., Tohidi Moghadam, H.R., and Zahedi, H. (2013). Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj‐Napoca 41 (1): 201–207.

47 Jarosz, M., Pawlik, A., Szuwarzyński, M. et al. (2016). Nanoporous anodic titanium dioxide layers as potential drug delivery systems: drug release kinetics and mechanism. Colloids and Surfaces B: Biointerfaces 143: 447–454.

48 Kim, M.‐S., Louis, K.M., Pedersen, J.A. et al. (2014). Using citrate‐functionalized TiO2 nanoparticles to study the effect of particle size on zebrafish embryo toxicity. Analyst 139 (5): 964–972.

49  Kolenčík, M., Ernst, D., Komár, M. et al. (2019a). Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica l.) under field conditions. Nanomaterials 9 (11): 1559.

50 Kolenčík, M., Štrba, P., Šebesta, M. et al. (2019b). Nanogold biosynthesis mediated by mixed flower pollen grains. Journal of Nanoscience and Nanotechnology 19 (5): 2983–2988.

51 Kolenčík, M., Nemček, L., Šebesta, M. et al. (2020). Effect of TiO2 as plant‐growth stimulating nanomaterial on crop production. In: Plant Responses to Nanomaterials, Recent Interventions, and Physiological and Biochemical Responses (eds. V.P. Singh, S. Singh, S.M. Prasad, et al.). Springer International Publishing.

52 Kořenková, L., Šebesta, M., Urík, M. et al. (2017). Physiological response of culture media‐grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agriculturae Scandinavica Section B Soil and Plant Science 67 (4): 285–291.

53 Kumar, J. and Bansal, A. (2013). Photocatalysis by nanoparticles of titanium dioxide for drinking water purification: a conceptual and state‐of‐art review. Materials Science Forum 764: 130–150.

54 Kurepa, J., Paunesku, T., Vogt, S. et al. (2010). Uptake and distribution of Ultrasmall Anatase TiO2 alizarin red S Nanoconjugates in Arabidopsis thaliana. Nano Letters 10 (7): 2296–2302.

55 Kužel, S., Hruby, M., Cígler, P. et al. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biological Trace Element Research 91 (2): 179–189.

56 Labille, J., Feng, J., Botta, C. et al. (2010). Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environmental Pollution 158 (12): 3482–3489.

57 Lan, Y., Lu, Y., and Ren, Z. (2013). Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2 (5): 1031–1045.

58 Landa, P., Vankova, R., Andrlova, J. et al. (2012). Nanoparticle‐specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. Journal of Hazardous Materials 241–242: 55–62.

59 Landa, P., Cyrusova, T., Jerabkova, J. et al. (2016). Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water, Air, & Soil Pollution 227 (12): 448.

60 Larue, C., Laurette, J., Herlin‐Boime, N. et al. (2012a). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of the Total Environment 431: 197–208.

61 Larue, C., Veronesi, G., Flank, A.‐M. et al. (2012b). Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. Journal of Toxicology and Environmental Health, Part A 75 (13–15): 722–734.

62 Larue, C., Castillo‐Michel, H., Sobanska, S. et al. (2014). Fate of pristine TiO2 nanoparticles and aged paint‐containing TiO2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials 273: 17–26.

63 Larue, C., Castillo‐Michel, H., Stein, R.J. et al. (2016). Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. Spectrochimica Acta – Part B Atomic Spectroscopy 119: 17–24.

64 Larue, C., Baratange, C., Vantelon, D. et al. (2018). Influence of soil type on TiO2 nanoparticle fate in an agro‐ecosystem. Science of the Total Environment 630: 609–617.

65  Laware, S.L. and Raskar, S. (2014). Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. International Journal of Current Microbiology and Applied Sciences 3 (7): 749–760.

66 Li, W., Shah, S.I., Huang, C.‐P. et al. (2002). Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles. Materials Science and Engineering B 96 (3): 247–253.

67 Li, Z., Ding, S., Yu, X. et al. (2018). Multifunctional cementitious composites modified with nano titanium dioxide: a review. Composites Part A: Applied Science and Manufacturing 111: 115–137.

68 Lian, J., Zhao, L., Wu, J. et al. (2020). Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd‐induced phytotoxicity in maize (Zea mays L.). Chemosphere 239: 124794.

69 Liao, D.L. and Liao, B.Q. (2007). Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. Journal of Photochemistry and Photobiology A: Chemistry 187 (2): 363–369.

70 Lin, X., Li, J., Ma, S. et al. (2014). Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One 9 (10): 1–8.

71 Liu, R. and Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514: 131–139.

72 Macwan, D.P., Dave, P.N., and Chaturvedi, S. (2011). A review on nano‐TiO2 sol–gel type syntheses and its applications. Journal of Materials Science 46 (11): 3669–3686.

73 Mahlambi, M.M., Ngila, C.J., and Mamba, B.B. (2015). Recent developments in environmental Photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles – a review’ X. Zhang (ed.). Journal of Nanomaterials 2015: 790173.

74 Mahshid, S., Askari, M., and Ghamsari, M.S. (2007). Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology 189 (1): 296–300.

75 Marchiol, L., Mattiello, A., Pošćić, F. et al. (2016). Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. International Journal of Environmental Research and Public Health 13 (3): 332.

76 Mattiello, A., Filippi, A., Pošćić, F. et al. (2015). Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Frontiers in Plant Science 6 (1043): 1–13.

77 Mattiello, A., Lizzi, D., and Marchiol, L. (2018). Influence of titanium dioxide nanoparticles (nTiO2) on crop plants: a systematic overview. In: Nanomaterials in Plants, Algae, and Microorganisms (eds. D.K. Tripathi, P. Ahmad, S. Sharma, et al.), 277–296. Academic Press.

78 Matúš, P., Hagarová, I., Bujdoš, M. et al. (2009). Determination of trace amounts of total dissolved cationic aluminium species in environmental samples by solid phase extraction using nanometer‐sized titanium dioxide and atomic spectrometry techniques. Journal of Inorganic Biochemistry 103 (11): 1473–1479.

79 Mohamed, M.M. and Khairou, K.S. (2011). Preparation and characterization of nano‐silver/mesoporous titania photocatalysts for herbicide degradation. Microporous and Mesoporous Materials 142 (1): 130–138.

80 Moll, J., Okupnik, A., Gogos, A. et al. (2016). Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont. PLoS One 11 (5): 1–15.

81  Moll, J., Klingenfuss, F., Widmer, F. et al. (2017). Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass. Soil Biology and Biochemistry 111: 85–93.

82 Mushtaq, Y.K. (2011). Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. Journal of Environmental Science and Health, Part A 46 (14): 1732–1735.

83 Navarro, E., Baun, A., Behra, R. et al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17 (5): 372–386.

84 Nemček, L. and Hagarová, I. (2020). The recent strategies employed in chemical analysis of contaminated waters, sediments and soils as a part of the remediation process. Extraction. In: Environmental Pollution and Remediation (ed. R. Prasad). Springer.

85 Okupnik, A. and Pflugmacher, S. (2016). Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environmental Toxicology and Chemistry 35 (11): 2859–2866.

86 Ovečka, M., Lang, I., Baluška, F. et al. (2005). Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226 (1): 39–54.

87 Owolade, O. and Ogunleti, D. (2008). Effects of titanium dioxide on the diseases, development and yield of edible cowpea. Journal of Plant Protection Research 48 (3): 329–336.

88 Pakrashi, S., Jain, N., Dalai, S. et al. (2014). in vivo; Genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations.PLoS One 9 (2): 1–12.

89 Perreault, F., Popovic, R., and Dewez, D. (2014). Different toxicity mechanisms between bare and polymer‐coated copper oxide nanoparticles in Lemna gibba. Environmental Pollution 185: 219–227.

90 Porter, D.W., Wu, N., Hubbs, A.F. et al. (2012). Differential mouse pulmonary dose and time course responses to titanium dioxide nanospheres and nanobelts. Toxicological Sciences 131 (1): 179–193.

91 Pošćić, F., Mattiello, A., Fellet, G. et al. (2016). Effects of cerium and titanium oxide nanoparticles in soil on the nutrient composition of barley (Hordeum vulgare L.) kernels. International Journal of Environmental Research and Public Health 13 (6): 577.

92 Prasad, R., Kumar, V., and Prasad, K.S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology 13: 705–713.

93 Prasad, R., Bhattacharyya, A., and Nguyen, Q.D. (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in Microbiology 8: 1014.

94 Rafique, R., Arshad, M., Khokhar, M.F. et al. (2015). Growth response of wheat to titania nanoparticles application. NUST Journal of Engineering Sciences 7 (1): 42–46.

95 Rafique, R., Zahra, Z., Virk, N. et al. (2018). Dose‐dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agriculture, Ecosystems & Environment 255: 95–101.

96 Rajwade, J.M., Chikte, R.G., and Paknikar, K.M. (2020). Nanomaterials: new weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology 104 (4): 1437–1461.

97 Raliya, R., Nair, R., Chavalmane, S. et al. (2015a). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7 (12): 1584–1594.

98 Raliya, R., Biswas, P., and Tarafdar, J.C. (2015b). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports 5: 22–26.

99  Reddy, P.V.L., Kavitha, B., Reddy, P.A.K., and Kim, K.‐H. (2017). TiO2‐based photocatalytic disinfection of microbes in aqueous media: a review. Environmental Research 154: 296–303.

100 Rezaei, F., Moaveni, P., and Mozafari, H. (2015). Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr‐e‐Qods. Biological Forum 7 (1): 957–964.

101 Ruffini Castiglione, M., Giorgetti, L., Geri, C., and Cremonini, R. (2011). The effects of nano‐TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research 13 (6): 2443–2449.

102 Ruffini Castiglione, M., Giorgetti, L., Bellani, L. et al. (2016). Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L. Environmental and Experimental Botany 130: 11–21.

103 Šebesta, M. and Matúš, P. (2018). Separation, determination, and characterization of inorganic engineered nanoparticles in complex environmental samples. Chemicke Listy 112 (9): 583–589.

104 Šebesta, M., Kolenčík, M., Matúš, P., and Kořenková, L. (2017). Transport and distribution of engineered nanoparticles in soils and sediments. Chemicke Listy 111 (5): 322–328.

105 Šebesta, M., Kolenčík, M., Urík, M. et al. (2019). Increased colloidal stability and decreased solubility – sol‐gel synthesis of zinc oxide nanoparticles with humic acids. Journal of Nanoscience and Nanotechnology 19 (5): 3024–3030.

106 Šebesta, M., Nemček, L., Urík, M. et al. (2020). Partitioning and stability of ionic, nano‐ and microsized zinc in natural soil suspensions. Science of the Total Environment 700: 134445.

107 Seeger, E.M., Baun, A., Kästner, M., and Trapp, S. (2009). Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments 9 (1): 46–53.

108 Servin, A.D., Castillo‐Michel, H., Hernandez‐Viezcas, J.A. et al. (2012). Synchrotron micro‐XRF and micro‐XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science & Technology 46 (14): 7637–7643.

109 Servin, A.D., Morales, M.I., Castillo‐Michel, H. et al. (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environmental Science & Technology 47 (20): 11592–11598.

110 Servin, A., Elmer, W., Mukherjee, A. et al. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research 17 (92): 1–21.

111 Shaker, A.M., Zaki, A.H., Abdel‐Rahim, E.F.M., and Khedr, M.H. (2017). TiO2 nanoparticles as an effective nanopesticide for cotton leaf worm. Agricultural Engineering International: CIGR Journal, Special: 61–68.

112 Silva, R.M., TeeSy, C., Franzi, L. et al. (2013). Biological response to Nano‐scale titanium dioxide (TiO2): role of particle dose, shape, and retention. Journal of Toxicology and Environmental Health, Part A 76 (16): 953–972.

113 Silva, S., Oliveira, H., Craveiro, S.C. et al. (2016). Pure anatase and rutile + anatase nanoparticles differently affect wheat seedlings. Chemosphere 151: 68–75.

114 Silva, S., Oliveira, H., Silva, A.M.S., and Santos, C. (2017). The cytotoxic targets of anatase or rutile + anatase nanoparticles depend on the plant species. Biologia Plantarum 61 (4): 717–725.

115 Song, U., Jun, H., Waldman, B. et al. (2013). Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety 93: 60–67.

116  Su, A., Lin, K., Zhang, W. et al. (2009). Effect of Nano‐TiO2 on the germination and growth of rape seed [J]. Journal of Agro‐Environment Science 2.

117 Sun, P., Shijirbaatar, A., Fang, J. et al. (2015). Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Science of the Total Environment 505: 189–198.

118 Sun, W., Dou, F., Li, C. et al. (2020). Impacts of metallic nanoparticles and transformed products on soil health’. Critical Reviews in Environmental Science and Technology: 1–30.

119 Tan, W., Du, W., Barrios, A.C. et al. (2017). Surface coating changes the physiological and biochemical impacts of nano‐TiO2 in basil (Ocimum basilicum) plants. Environmental Pollution 222: 64–72.

120 Urík, M., Littera, P., Kim, H. et al. (2020). Sorptive and redox interactions of humic substances and metal(loid)s in presence of microorganisms. In: Mycoremediation and Environmental Sustainability (ed. R. Prasad), 390. Springer.

121 Wang, J. and Fan, Y. (2014). Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. International Journal of Molecular Sciences 15 (12): 22258–22278.

122 Wang, Y., Sun, C., Zhao, X. et al. (2016). The application of Nano‐TiO2 photo semiconductors in agriculture. Nanoscale Research Letters 11 (1): 529.

123 Weir, A., Westerhoff, P., Fabricius, L. et al. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology 46 (4): 2242–2250.

124 Yan, J., Huang, K., Wang, Y., and Liu, S. (2005). Study on anti‐pollution nano‐preparation of dimethomorph and its performance. Chinese Science Bulletin 50 (2): 108–112.

125 Yan, X., Yuan, K., Lu, N. et al. (2017). The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur‐doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Applied Catalysis B: Environmental 218: 20–31.

126 Yang, F., Hong, F., You, W. et al. (2006). Influence of nano‐anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110 (2): 179–190.

127 Yeo, M.K. and Nam, D.H. (2013). Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: a comparison of TiO2 nanoparticles and nanotubes. Environmental Pollution 178: 166–172.

128 Zahra, Z., Ali, M.A., Parveen, A. et al. (2019). Exposure–response of wheat cultivars to TiO2 nanoparticles in contrasted soils. Soil and Sediment Contamination: An International Journal 28 (2): 184–199.

129 Zheng, L., Hong, F., Lu, S., and Liu, C. (2005). Effect of nano‐TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research 104 (1): 83–91.

Nanotechnology in Plant Growth Promotion and Protection

Подняться наверх