Читать книгу Nanotechnology in Plant Growth Promotion and Protection - Группа авторов - Страница 61

References

Оглавление

1 Awasthi, A., Bansal, S., Jangir, L.K. et al. (2017). Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromolecular Symposia‐ 2017. Wiley Online Library, 1700043.

2 Broadley, M.R., White, P.J., Hammond, J.P. et al. (2007). Zinc in plants. New Phytologist 173: 677–702.

3 Burman, U., Saini, M., and Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry 95: 605–612.

4 Butler, R. (1993). Coatings, films and treatments. Seed World 10: 18–24.

5 Chamani, E., Karimi Ghalehtaki, S., Mohebodini, M., and Ghanbari, A. (2015). The effect of zinc oxide nanoparticles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss. Iranian Journal of Genetics and Plant Breeding 4: 11–19.

6 Choudhary, R.C., Kumaraswamy, R., Kumari, S. et al. (2019). Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules 127: 126–135.

7 Deinlein, U., Weber, M., Schmidt, H. et al. (2012). Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. The Plant Cell 24: 708–723.

8 Dimkpa, C.O., Mclean, J.E., Britt, D.W., and Anderson, A.J. (2015). Nano‐CuO and interaction with nano‐ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24: 119–129.

9  Dimkpa, C., Andrews, J., Fugice, J. et al. (2020). Facile coating of urea with low‐dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Frontiers in Plant Science 11: 168.

10 Eichert, T. and Goldbach, H.E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces–further evidence for a stomatal pathway. Physiologia Plantarum 132: 491–502.

11 Elhaj Baddar, Z. and Unrine, J.M. (2018). Functionalized‐ZnO‐nanoparticle seed treatments to enhance growth and zn content of wheat (Triticum aestivum) seedlings. Journal of Agricultural and Food Chemistry 66: 12166–12178.

12 Faizan, M., Faraz, A., Mir, A.R., and Hayat, S. (2020). Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation: 1–15.

13 Farooq, M., Wahid, A., and Siddique, K.H. (2012). Micronutrient application through seed treatments: a review. Journal of Soil Science and Plant Nutrition 12: 125–142.

14 Fernández, V. and Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Critical Reviews in Plant Sciences 28: 36–68.

15 García‐Gómez, C. and Fernández, M.D. (2019). Impacts of metal oxide nanoparticles on seed germination, plant growth and development. In: Analysis, Fate, and Toxicity of Engineered Nanomaterials in Plants, vol. 84 (eds. S.K. Verma and A.K. Das), 75–124. Amsterdam, UK: Elsevier.

16 García‐López, J.I., Niño‐Medina, G., Olivares‐Sáenz, E. et al. (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8 (254) https://doi.org/10.3390/plants8080254.

17 Ghodake, G., Seo, Y.D., and Lee, D.S. (2011). Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. Journal of hazardous materials 186: 952–955.

18 Hafeez, B., Khanif, Y., and Saleem, M. (2013). Role of zinc in plant nutrition‐a review. Journal of Experimental Agriculture International 3 (2): 374–391.

19 Hänsch, R. and Mendel, R.R. (2009). Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Current Opinion in Plant Biology 12: 259–266.

20 Helaly, M.N., El‐Metwally, M.A., El‐Hoseiny, H. et al. (2014). Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Australian Journal of Crop Science 8: 612–624.

21 Hussain, D., Haydon, M.J., Wang, Y. et al. (2004). P‐type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell 16: 1327–1339.

22 Hussein, M. and Abou‐Baker, N. (2018). The contribution of nano‐zinc to alleviate salinity stress on cotton plants. Royal Society Open Science 5: 171809. https://doi.org/10.1098/rsos.171809.

23 Israel García‐López, J., Lira‐Saldivar, R.H., Zavala‐García, F. et al. (2018). Effects of zinc oxide nanoparticles on growth and antioxidant enzymes of Capsicum chínense. Toxicological & Environmental Chemistry 100: 560–572.

24 Kisan, B., Shruthi, H., Sharanagouda, H. et al. (2015). Effect of nano‐zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5 https://doi.org/10.4172/2168‐9881.1000135.

25  Kołodziejczak‐Radzimska, A. and Jesionowski, T. (2014). Zinc oxide from synthesis to application: a review. Materials 7: 2833–2881.

26 Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology 61: 517–534.

27 Latef, A.A.H.A., Alhmad, M.F.A., and Abdelfattah, K.E. (2017). The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. Journal of Plant Growth Regulation 36: 60–70.

28 Laware, S. and Raskar, S. (2014). Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology Science 3: 874–881.

29 Mahajan, P., Dhoke, S., and Khanna, A. (2011). Effect of nano‐ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology 2011: 696535. https://doi.org/10.1155/2011/696535.

30 Malandrakis, A.A., Kavroulakis, N., and Chrysikopoulos, C.V. (2019). Use of copper, silver and zinc nanoparticles against foliar and soil‐borne plant pathogens. Science of the Total Environment 670: 292–299.

31 Masuthi, D.A., Vyakaranahal, B., and Deshpande, V. (2009). Influence of pelleting with micronutrients and botanical on growth, seed yield and quality of vegetable cowpea. Karnataka Journal of Agricultural Sciences 22: 898–900.

32 Medina‐Velo, I.A., Barrios, A.C., Zuverza‐Mena, N. et al. (2017). Comparison of the effects of commercial coated and uncoated ZnO nanomaterials and Zn compounds in kidney bean (Phaseolus vulgaris) plants. Journal of Hazardous Materials 332: 214–222.

33 Moghaddasi, S., Fotovat, A., Karimzadeh, F. et al. (2017). Effects of coated and non‐coated ZnO nano particles on cucumber seedlings grown in gel chamber. Archives of Agronomy and Soil Science 63: 1108–1120.

34 Mukherjee, A., Peralta‐Videa, J.R., Bandyopadhyay, S. et al. (2014). Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6: 132–138.

35 Munir, T., Rizwan, M., Kashif, M. et al. (2018). Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest Journal of Nanomaterials & Biostructures (DJNB) 13: 315–323.

36 Naderi, M. and Danesh‐Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences 5 (5): 2229–2232.

37 Ogunyemi, S.O., Abdallah, Y., Zhang, M. et al. (2019). Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artificial Cells, Nanomedicine, and Biotechnology 47: 341–352.

38 Palmer, C.M. and Guerinot, M.L. (2009). Facing the challenges of cu, Fe and Zn homeostasis in plants. Nature Chemical Biology 5: 333–340.

39 Panda, S. (2017). Physiological impact of zinc nanoparticle on germination of rice (Oryza sativa L) seed. Journal of Plant Science and Phytopathology 1: 062–070.

40 Pokhrel, L.R. and Dubey, B. (2013). Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Science of the Total Environment 452: 321–332.

41  Prasad, T., Sudhakar, P., Sreenivasulu, Y. et al. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35: 905–927.

42 Priester, J.H., Ge, Y., Mielke, R.E. et al. (2012). Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences 109: E2451–E2456.

43 Raliya, R., Nair, R., Chavalmane, S. et al. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7: 1584–1594.

44 Ramesh, M., Palanisamy, K., Babu, K., and Sharma, N.K. (2014). Effects of bulk & nano‐titanium dioxide and zinc oxide on physio‐morphological changes in Triticum aestivum Linn. Journal of Global Biosciences 3: 415–422.

45 Raskar, S. and Laware, S. (2014). Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal of Current Microbiology and Applied Sciences 3: 467–473.

46 Römheld, V. and Marschner, H. (1991). Function of micronutrients in plants. Micronutrients in Agriculture 4: 297–328.

47 Rossi, L., Fedenia, L.N., Sharifan, H. et al. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135: 160–166.

48 Savassa, S.M., Duran, N.D.M., Rodrigues, E.S. et al. (2018). Effects of ZnO nanoparticles on Phaseolus vulgaris germination and seedling development determined by X‐ray spectroscopy. ACS Applied Nano Materials 1: 6414–6426.

49 Schönherr, J. (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany 57: 2471–2491.

50 Sedghi, M., Hadi, M., and Toluie, S.G. (2013). Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Annales of West University of Timisoara. Series of Biology XVI: 73–78.

51 Sharifan, H., Ma, X., Moore, J.M. et al. (2019). Zinc oxide nanoparticles alleviated the bioavailability of cadmium and lead and changed the uptake of iron in hydroponically grown lettuce (Lactuca sativa L. var. Longifolia). ACS Sustainable Chemistry & Engineering 7: 16401–16409.

52 Sharma, A., Patni, B., Shankhdhar, D., and Shankhdhar, S. (2013). Zinc–an indispensable micronutrient. Physiology and Molecular Biology of Plants 19: 11–20.

53 Sheteiwy, M.S., Dong, Q., An, J. et al. (2017). Regulation of ZnO nanoparticles‐induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regulation 83: 27–41.

54 Sturikova, H., Krystofova, O., Huska, D., and Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials 349: 101–110.

55 Subbaiah, L.V., Prasad, T.N.V.K.V., Krishna, T.G. et al. (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). Journal of Agricultural and Food Chemistry 64: 3778–3788.

56 Tarafdar, J., Raliya, R., Mahawar, H., and Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research 3: 257–262.

57  Taylor, A. (1999). Seed enhancement. Journal of New Seeds 1: 103–103.

58 Taylor, A.G., Eckenrode, C., and Straub, R. (2001). Seed coating technologies and treatments for onion: challenges and progress. HortScience 36: 199–205.

59 Thunugunta, T., Reddy, A.C., Seetharamaiah, S.K. et al. (2018). Impact of zinc oxide nanoparticles on eggplant (S. melongena): studies on growth and the accumulation of nanoparticles. IET Nanobiotechnology 12: 706–713.

60 Tirani, M.M., Haghjou, M.M., and Ismaili, A. (2019). Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Functional Plant Biology 46: 360–375.

61 Torabian, S., Zahedi, M., and Khoshgoftarmanesh, A. (2018). Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. Journal of Agricultural Science and Technology 18: 1013–1025.

62 Venkatachalam, P., Priyanka, N., Manikandan, K. et al. (2017). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry 110: 118–127.

63 Wang, X., Sun, W., Zhang, S. et al. (2018). Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice (Oryza sativa) in a hydroponic system. Environmental Science & Technology 52: 10040–10047.

64 Watson, J.‐L., Fang, T., Dimkpa, C.O. et al. (2015). The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28: 101–112.

65 White, P.J., Whiting, S.N., Baker, A.J., and Broadley, M.R. (2002). Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytologist 153: 201–207.

66 Zafar, H., Ali, A., Ali, J.S. et al. (2016). Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Frontiers in Plant Science 7: 535. https://doi.org/10.3389/fpls.2016.00535.

67 Zhang, R., Zhang, H., Tu, C. et al. (2015a). Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environmental Science and Pollution Research 22: 11109–11117.

68 Zhang, Y., Leu, Y.R., Aitken, R.J., and Riediker, M. (2015b). Inventory of engineered nanoparticle‐containing consumer products available in the Singapore retail market and likelihood of release into the aquatic environment. International Journal of Environmental Research and Public Health 12: 8717–8743.

69 Zhao, L., Peralta‐Videa, J.R., Rico, C.M. et al. (2014). CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry 62: 2752–2759.

Nanotechnology in Plant Growth Promotion and Protection

Подняться наверх