Читать книгу Physiology of Salt Stress in Plants - Группа авторов - Страница 21
1.10 Reaching the Current Status and Conclusion
ОглавлениеSubjectivity to the external stressors makes the plant vulnerable and critically impacts productivity. Salinity being a predominant stress factor accounts for a significant chunk of yield‐oriented issues and up to further extent desertification. The usage of inferior quality of irrigation water and unlimited usage of chemical fertilizers often provoke saline intensification in arid and semiarid regions. Saline soil interrupts the unrestricted plant water uptake by hampering the osmotic balance. Sodic soil enforces the accumulation of sodium and chloride ions in the plant tissue. It leads to the scarcity of the essential minerals and inhibition of physiological growth due to retarded cell division rate. Plants exposed to sodicity often subject to ionic inequity and report an acute dearth of vital minerals such as potassium, magnesium, and calcium.
Moreover, excess sodium gets further transported to the xylem tissue of leaves and settle as a residue after evaporation (Baum et al. 2000). The accumulated salt mass disrupts the chloroplast structure and interferes with photosynthesis. As a preventive measure, the inherent water potential of the plant surge below that of the resident soil to withhold the negative turgor and uphold water balance. However, to mitigate a specific situation, plants internally enhance the solute concentration to uplift the osmotica (Carillo et al. 2011). Failing so may trigger the generation of ROS. Inequity between excessive synthesis and destitute scavenging often leaves insistent ROSs in the system. It oxidizes organics and destructs sensitive structures such as cell membranes, DNA and RNA structures, etc. (Gupta and Huang 2014).
Contrarily, the assimilation of metabolic solutes and other soil‐driven solutes in the plant is a distinct scenario, while exposed to stressors (Thomas and Bohnert 1993). These solutes safeguard the vegetation against alien stresses by different mechanisms, including osmoregulation, ROS decontamination, shield the cell membrane against the rupture, and enhancement of enzymatic/protein balance (Hasegawa et al. 2000; Hasanuzzaman et al. 2014; Acosta‐Motos et al. 2017). Furthermore, solutes such as osmoprotectants provide auxiliary protection to cellular components against desiccation. Solutes such as sucrose, glycine betaine, trehalose, and proline are appropriate examples of the above (Hanin et al. 2016).
While salinity is a violent threat steadily evolving across the globe, sustaining food security at this juncture is an enormous task before the agriculturists. Including genetic engineering, several approaches were embraced to produce salt‐tolerant vegetative species mimicking halophytes. Unfortunately, none of the species could be commercialized due to certain limitations.
Reclamation of the deserted lands could be the other way around. Restoration of the sodic soil is more accepted. The conventional approach includes the application of gypsum or pyrite. At the same time, recent researches recommended the usage of biodegradable municipal waste and industrial sludge as a sustainable alternative. Further research needs to be carried out to comprehend the challenges oriented and develop this technique as the alternate disposal model, especially for a small town with no existing waste management mechanism (ICAR 2015).