Читать книгу Wetland Carbon and Environmental Management - Группа авторов - Страница 19

1.1.3. Overview of Chapter

Оглавление

The chapter is organized first by introducing methodologies used to estimate above‐ and belowground carbon stocks, describing field methods, remote sensing, and ecological modeling approaches. A combination of these three methods is used in most regional‐ to global‐scale accounting of carbon stocks, where field data constrain models that are used to interpret remote sensing observations of vegetation indices or soil moisture. The second section of the chapter provides a review of carbon stock estimates for boreal wetlands (permafrost and peatlands separately, and mineral soil wetlands), tropical peatlands, temperate wetlands (peatlands and mineral‐soil systems), and for coastal ecosystems (mangroves and tidal marshes). The last section of the chapter describes how land‐use change has affected wetlands, through drainage, degradation, and peat harvest, and more recently the conversion of tropical wetlands to oil palm plantations, and then presents how climate change is expected to affect wetland carbon stocks through increases in air temperature but also via changes in precipitation regimes.


Figure 1.1 Global maximum extent of vegetated wetland area using the Wetland Area Dataset for Methane Modeling (WAD2M, based on Zhang et al., 2020), which is the basis of the wetland methane budget for Saunois et al. (2020). The dataset combines surface inundation data from the Surface Water Microwave Product Series V3.2 (SWAMPS) with inventories of tropical wetlands (Gumbricht et al., 2017), temperate wetlands (Lehner and Doll, 2004) and high‐latitude wetlands (Hugelius et al., 2014). Inland waters are removed using the Landsat permanent water bodies dataset of Pekel et al. (2016) and rice cultivated areas removed using MIRCA2000.

Wetland Carbon and Environmental Management

Подняться наверх