Читать книгу Nanotechnology in Medicine - Группа авторов - Страница 24

References

Оглавление

1 Allen, S., Bobbala, S., Karabin, N., and Scott, E. (2019). On the advancement of polymeric bicontinuous nanospheres toward biomedical applications. Nanoscale Horizons 4 (2): 258–272. https://doi.org/10.1039/c8nh00300a.

2 Armstead, A. and Li, B. (2016). Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC‐Co) nanoparticle exposure. International Journal of Nanomedicine 11: 6421–6433. https://doi.org/10.2147/IJN.S121238.

3 Azarnezhad, A., Samadian, H., Jaymand, M. et al. (2020). Toxicological profile of lipid‐based nanostructures: are they considered as completely safe nanocarriers? Critical Reviews in Toxicology 50 (2): 148–176. https://doi.org/10.1080/10408444.2020.1719974.

4 Bayda, S., Adeel, M., Tuccinardi, T. et al. (2020). The history of nanoscience and nanotechnology: from chemical‐physical applications to nanomedicine. Molecules 25 (1): 1–15. https://doi.org/10.3390/molecules25010112.

5 Bobo, D., Robinson, K., Islam, J. et al. (2016). Nanoparticle‐based medicines: a review of FDA‐approved materials and clinical trials to date. Pharmaceutical Research 33 (10): 2373–2387. https://doi.org/10.1007/s11095‐016‐1958‐5.

6 Buzea, C. and Pacheco, I. (2017). Nanomaterials and their classification. In: EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials (ed. A. Shukla), 3–45. Springer (India) Pvt. Ltd.

7 Caster, J., Patel, A., Zhang, T., and Wang, A. (2017). Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 9 (1): e1416. https://doi.org/10.1002/wnan.1416.

8 Chavan, T., Muttil, P., and Kunda, N. (2020). Introduction to Nanomedicine in Drug Delivery. Switzerland AG: Springer Nature.

9 Choi, Y. and Han, H. (2018). Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. Journal of Pharmaceutical Investigation 48 (1): 43–60. https://doi.org/10.1007/s40005‐017‐0370‐4.

10  Choi, Y., Lee, M., David, A., and Park, Y. (2014). Nanoparticles for gene delivery: therapeutic and toxic effects. Molecular & Cellular Toxicology 10 (1): 1–8. https://doi.org/10.1007/s13273‐014‐0001‐3.

11 De Jong, W. and Borm, P. (2008). Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine 3 (2): 133–149.

12 Dickinson, A., Godden, J., Lanovyk, K., and Ahmed, S. (2019). Assessing the safety of nanomedicines: a mini review. Applied In Vitro Toxicology 5 (3): 114–122. https://doi.org/10.1089/aivt.2019.0009.

13 El‐Ansary, A. and Al‐Daihan, S. (2009). On the toxicity of therapeutically used nanoparticles: an overview. Journal of Toxicology 2009: 1–9. https://doi.org/10.1155/2009/754810.

14 Eloy, J., Claro de Souza, M., Petrilli, R. et al. (2014). Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids and Surfaces B: Biointerfaces 123: 345–363. https://doi.org/10.1016/j.colsurfb.2014.09.029.

15 Fadeel, B. and Alexiou, C. (2020). Brave new world revisited: focus on nanomedicine. Biochemical and Biophysical Research Communications 533 (1): 36–49. https://doi.org/10.1016/j.bbrc.2020.08.046.

16 Fadeel, B., Kagan, V., Krug, H. et al. (2007). There's plenty of room at the forum: potential risks and safety assessment of engineered nanomaterials. Nanotoxicology 1 (2): 73–84. https://doi.org/10.1080/17435390701565578.

17 Farjadian, F., Ghasemi, A., Gohari, O. et al. (2019). Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (London) 14 (1): 93–126. https://doi.org/10.2217/nnm‐2018‐0120.

18 Fubini, B., Ghiazza, M., and Fenoglio, I. (2010). Physico‐chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4: 347–363. https://doi.org/10.3109/17435390.2010.509519.

19 Gabizon, A., Catane, R., Uziely, B. et al. (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene‐glycol coated liposomes. Cancer Research 54 (4): 987–992.

20 Gabizon, A., de Rosales, R., and La‐Beck, N. (2020). Translational considerations in nanomedicine: the oncology perspective. Advanced Drug Delivery Reviews 158: 140–157. https://doi.org/10.1016/j.addr.2020.05.012.

21 Gatoo, M., Naseem, S., Arfat, M. et al. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Research International 2014: 1–8. https://doi.org/10.1155/2014/498420.

22 Gaur, N., Sharma, N., Dahiya, A. et al. (2020). Toxicity and Regulatory Concerns for Nanoformulations in Medicine. Beverly, MA: Scrivener Publishing LLC.

23 George, S., Ho, S., Wong, E. et al. (2015). The multi‐facets of sustainable nanotechnology ‐ lessons from a nanosafety symposium. Nanotoxicology 9 (3): 404–406. https://doi.org/10.3109/17435390.2015.1027315.

24 Germain, M., Caputo, F., Metcalfe, S. et al. (2020). Delivering the power of nanomedicine to patients today. Journal of Controlled Release 326: 164–171. https://doi.org/10.1016/j.jconrel.2020.07.007.

25 Greish, K., Mathur, A., Bakhiet, M., and Taurin, S. (2018). Nanomedicine: is it lost in translation? Therapeutic Delivery 9 (4): 1–18. https://doi.org/10.4155/tde‐2017‐0118.

26 Guadagnini, R., Kenzaoui, B.H., Walker, L. et al. (2015). Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 9 (Suppl 1): 13–24. https://doi.org/10.3109/17435390.2013.829590.

27 Hasan, A., Morshed, M., Memic, A. et al. (2018). Nanoparticles in tissue engineering: applications, challenges and prospects. Internal Journal of Nanomedicine 13: 5637–5655. https://doi.org/10.2147/IJN.S153758.

28 Havel, H., Finch, G., Strode, P. et al. (2016). Nanomedicines: from bench to bedside and beyond. The AAPS Journal 18 (6): 1373–1378. https://doi.org/10.1208/s12248‐016‐9961‐7.

29  Heinrich, M., Martina, B., and Prakash, J. (2020). Nanomedicine strategies to target coronavirus. Nano Today 35: 1–21. https://doi.org/10.1016/j.nantod.2020.100961.

30 Jeevanandam, J., Barhoum, A., Chan, Y. et al. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology 9: 1050–1074. https://doi.org/10.3762/bjnano.9.98.

31 Juillerat‐Jeanneret, L., Dusinska, M., Fjellsbo, L. et al. (2015). Biological impact assessment of nanomaterial used in nanomedicine: introduction to the NanoTEST project. Nanotoxicology 9 (Suppl 1): 5–12. https://doi.org/10.3109/17435390.2013.826743.

32 Khan, F. (2020). Nanomaterials: Types, Classifications, and Sources. Singapore: Springer Nature.

33 Khan, S., Hasan, A., Attar, F. et al. (2020). Gold nanoparticle‐based platforms for diagnosis and treatment of myocardial infarction. ACS Biomaterials Science & Engineering 6 (12): 6460–6477. https://doi.org/10.1021/acsbiomaterials.0c00955.

34 Klaine, S., Alvarez, P., Batley, G. et al. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27 (9): 1825–1851.

35 Koziorowski, J., Stanciu, A., Gomez‐Vallejo, V., and Llop, J. (2017). Radiolabeled nanoparticles for cancer diagnosis and therapy. Anti‐Cancer Agents in Medicinal Chemistry 17 (3): 333–354. https://doi.org/10.2174/1871520616666160219162902.

36 Krukemeyer, M., Krenn, V., and Huebner, F. (2015). History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. Journal of Nanomedicine & Nanotechnology 06 (06): 1–7. https://doi.org/10.4172/2157‐7439.1000336.

37 Kubinova, S. and Sykova, E. (2010). Nanotechnologies in regenerative medicine. Minimally Invasive Therapy 19 (3): 144–156. https://doi.org/10.3109/13645706.2010.481398.

38 Lombardo, D., Kiselev, M., and Caccamo, M. (2019). Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials 2019: 1–26. https://doi.org/10.1155/2019/3702518.

39 Lopalco, A. and Denora, N. (2018). Nanoformulations for Drug Delivery: Safety, Toxicity, and Efficacy, 2018/06/24e, vol. 1800. New York: Humana Press.

40 Makvandi, P., Ghomi, M., Padil, V. et al. (2020). Biofabricated nanostructures and their composites in regenerative medicine. ACS Applied Nano Materials 3 (7): 6210–6238. https://doi.org/10.1021/acsanm.0c1164.

41 Martins, J., das Neves, J., de la Fuente, M. et al. (2020). The solid progress of nanomedicine. Drug Delivery and Translational Research 10 (3): 726–729. https://doi.org/10.1007/s13346‐020‐00743‐2.

42 McDonald, T., Siccardi, M., Moss, D. et al. (2015). The application of nanotechnology to drug delivery in medicine. In: Nanoengineering (ed. P. Dolez), 173–223. Amsterdam: Elsevier.

43 McGoron, A. (2020). Perspectives on the future of nanomedicine to impact patients: an analysis of US federal funding and interventional clinical trials. Bioconjugate Chemistry 31 (3): 436–447. https://doi.org/10.1021/acs.bioconjchem.9b00818.

44 Mukherjee, B., Dey, N., Maji, R. et al. (2014). Current status and future scope for nanomaterials in drug delivery. In: Application of Nanotechnology in Drug Delivery (ed. A. Sezer). London: IntechOpen.

45 Oberdorster, G. (2010). Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. Journal of Internal Medicine 267 (1): 89–105. https://doi.org/10.1111/j.1365‐2796.2009.02187.x.

46 Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 113 (7): 823–839. https://doi.org/10.1289/ehp.7339.

47 Oberdörster, G., Stone, V., and Donaldson, K. (2009). Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1 (1): 2–25. https://doi.org/10.1080/17435390701314761.

48 Osman, N.M., Sexton, D.W., and Saleem, I.Y. (2020). Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 14 (1): 21–58. https://doi.org/10.1080/17435390.2019.1661043.

49 Parappurath, N., Kirubanandam, S., Kumar, V., and Ahmed, B. (2018). Nanomaterials history, classification, unique properties, production and market. In: Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends (eds. M. ASH and A. Barhoum), 341–384. United Kingdom: Elsevier.

50 Paris, J. and Vallet‐Regí, M. (2020). Mesoporous silica nanoparticles for co‐delivery of drugs and nucleic acids in oncology: a review. Pharmaceutics 12 (6) https://doi.org/10.3390/pharmaceutics12060526.

51 Park, K. (2019a). The beginning of the end of the nanomedicine hype. Journal of Controlled Release 305: 221–222. https://doi.org/10.1016/j.jconrel.2019.05.044.

52 Park, K. (2019b). Transcending nanomedicine to the next level: are we there yet? Journal of Controlled Release 298: 213. https://doi.org/10.1016/j.jconrel.2019.02.040.

53 Patra, J., Das, G., Fraceto, L. et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology 16 (1): 1–33. https://doi.org/10.1186/s12951‐018‐0392‐8.

54 Pelaz, B., Alexiou, C., Alvarez‐Puebla, R. et al. (2017). Diverse applications of nanomedicine. ACS Nano 11 (3): 2313–2381. https://doi.org/10.1021/acsnano.6b06040.

55 Pellico, J., Ellis, C., and Davis, J. (2019). Nanoparticle‐based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media & Molecular Imaging 2019: 1–13. https://doi.org/10.1155/2019/1845637.

56 Pratiwi, F., Kuo, C., Chen, B., and Chen, P. (2019). Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine (London) 14 (13): 1759–1769. https://doi.org/10.2217/nnm‐2019‐0105.

57 Rahman, M., Ahmad, M., Kazmi, I. et al. (2012). Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opinion on Drug Delivery 9 (4): 367–381. https://doi.org/10.1517/17425247.2012.668522.

58 Sangtani, A., Nag, O., Field, L. et al. (2017). Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 9 (6) https://doi.org/10.1002/wnan.1466.

59 SCENIHR (2006). Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies (SCENIHR/002/05). https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf

60 Sharma, D., Sharma, N., Pathak, M. et al. (2018). Nanotechnology‐based drug delivery systems. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems (ed. A.M. Grumezescu), 39–79. New York: William Andrew Publishing.

61 Shidhaye, S., Vaidya, R., Sutar, S. et al. (2008). Solid lipid nanoparticles and nanostructured lipid carriers‐‐innovative generations of solid lipid carriers. Current Drug Delivery 5 (4): 324–331. https://doi.org/10.2174/156720108785915087.

62 Shubhika, K. (2013). Nanotechnology and medicine – the upside and the downside. International Journal of Drug Development and Research 5 (1): 1–10.

63 Singh, A., Laux, P., Luch, A. et al. (2019). Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicology Mechanisms and Methods 29 (5): 378–387. https://doi.org/10.1080/15376516.2019.1566425.

64 Sukhanova, A., Bozrova, S., Sokolov, P. et al. (2018). Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters 13 (1): 1–21. https://doi.org/10.1186/s11671‐018‐2457‐x.

65  Teleanu, D., Negut, I., Grumezescu, V. et al. (2019). Nanomaterials for drug delivery to the central nervous system. Nanomaterials (Basel) 9 (3): 1–18. https://doi.org/10.3390/nano9030371.

66 Trotta, F. and Mele, A. (2019). Nanomaterials: Classification and Properties, 1e. Germany: Wiley‐VCHVerlag GmbH& Co. KGaA.

67 Utreja, P., Verma, S., Rahman, M., and Kumar, L. (2020). Use of nanoparticles in medicine. Current Biochemical Engineering 6 (1): 7–24. https://doi.org/10.2174/2212711906666190724145101.

68 Vanza, J., Patel, R., and Patel, M. (2020). Nanocarrier centered therapeutic approaches: recent developments with insight towards the future in the management of lung cancer. Journal of Drug Delivery Science and Technology 60: 1–22. https://doi.org/10.1016/j.jddst.2020.102070.

69 Ventola, C. (2017). Progress in nanomedicine: approved and investigational nanodrugs. Pharmacy and Therapeutics (P&T) 42 (12): 743–755.

70 Viswanath, B. and Kim, S. (2016). Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies, 2016/10/09e, vol. 242. Cham, Switzerland: Springer.

71 Warheit, D. and Sayes, C. (2015). Routes of exposure to nanoparticles: hazard tests related to portal entries. In: Nanoengineering (ed. P. Dolez), 41–54. United Kingdom: Elsevier.

72 Wibowo, D., Jorritsma, S., Gonzaga, Z.J. et al. (2020). Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 268: 120597. https://doi.org/10.1016/j.biomaterials.2020.120597.

73 Wolfram, J., Zhu, M., Yang, Y. et al. (2015). Safety of nanoparticles in medicine. Current Drug Targets 16 (14): 1671–1681. https://doi.org/10.2174/1389450115666140804124808.

74 Wu, L., Wang, D., and Li, Z. (2020). Grand challenges in nanomedicine. Materials Science and Engineering C 106: 1–7. https://doi.org/10.1016/j.msec.2019.110302.

75 Zeb, A., Rana, I., Choi, H.I. et al. (2020). Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 12 (12): 1184. https://doi.org/10.3390/pharmaceutics12121184.

76 Zhao, J. and Castranova, V. (2011). Toxicology of nanomaterials used in nanomedicine. Journal of Toxicology and Environmental Health, Part B Critical Reviews 14 (8): 593–632. https://doi.org/10.1080/10937404.2011.615113.

Nanotechnology in Medicine

Подняться наверх