Читать книгу Nanotechnology-Enhanced Food Packaging - Группа авторов - Страница 49

References

Оглавление

1 1 Ghaani, M., Cozzolino, C.A., Castelli, G., and Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 51: 1–11. https://doi.org/10.1016/j.tifs.2016.02.008.

2 2 Valencia, G.A., Luciano, C.G., and Monteiro, A.R. (2019). Smart and active edible coatings based on biopolymers. In: Polymers for Agri-Food Applications (ed. T.J. Gutiérrez), 391–416. Gewerbestrasse: Springer.

3 3 Valencia, G.A. and Sobral, P.J.d.A. (2018). Recent trends on nano-biocomposite polymers for food packaging. In: Polymers for Food Applications, 1e (ed. T.J. Gutiérrez), 101–130. Gewerbestrasse: Springer.

4 4 da Silva, M.N., de Fonseca, J., M., Feldhaus, H.K. et al. (2019). Physical and morphological properties of hydroxypropyl methylcellulose films with curcumin polymorphs. Food Hydrocolloids 97: 105217. https://doi.org/10.1016/j.foodhyd.2019.105217.

5 5 Valencia, G.A., Luciano, C.G., Lourenço, R.V. et al. (2019). Morphological and physical properties of nano-biocomposite films based on collagen loaded with laponite®. Food Packag. Shelf Life 19: 24–30. doi: 10.1016/j.fpsl.2018.11.013.

6 6 Andretta, R., Luchese, C.L., Tessaro, I.C., and Spada, J.C. (2019). Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids 93: 317–324. https://doi.org/10.1016/j.foodhyd.2019.02.019.

7 7 Hanani, Z.A.N. (2018). Surface properties of biodegradable polymers for food packaging. In: Polymers for Food Applications, 1e (ed. T.J. Gutiérrez), 817. Cham: Springer.

8 8 Gutiérrez, T.J., Guarás, M.P., and Alvarez, V.A. (2017). Reactive extrusion for the production of starch-based biopackaging. In: Biopackaging (ed. M.A. Masuelli). Miami: CRC Press, Taylor & Francis Group.

9 9 Gruji, R., Vujadinovi, D., and Savanovi, D. (2017). Biopolymers as food packaging materials. In: Advances in Applications of Industrial Biomaterials, 1e (eds. E. Pellicer, D. Nikolic, J. Sort, et al.), 139–160. Springer International Publishing.

10 10 Shankar, S. and Rhim, J.-W. (2018). Bionanocomposite films for food packaging applications. In: Reference Module in Food Science, 1e, 1–10. Elsevier https://doi.org/10.1016/B978-0-08-100596-5.21875-1.

11 11 Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., and Beppu, M.M. (2011). Natural-based plasticizers and biopolymer films: a review. Eur. Polym. J. 47 (3): 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011.

12 12 Fox, P.F. and Brodkorb, A. (2008). The casein micelle: historical aspects, current concepts and significance. Int. Dairy J. 18 (7): 677–684.

13 13 Chevalier, E., Assezat, G., Prochazka, F., and Oulahal, N. (2018). Development and characterization of a novel edible extruded sheet based on different casein sources and influence of the glycerol concentration. Food Hydrocolloids 75: 182–191.

14 14 Ramesh, C. and Kilara, A. (2011). Dairy Ingredients for Food Processing. Wiley https://doi.org/10.1002/9780470959169.

15 15 Abd El-Salam, M.H. and El-Shibiny, S. (2019). Preparation and potential applications of casein–polysaccharide conjugates: a review. J. Sci. Food Agric. 100: 1852–1859.

16 16 Picchio, M.L., Linck, Y.G., Monti, G.A. et al. (2018). Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocolloids 84: 424–434.

17 17 Ranadheera, C.S., Liyanaarachchi, W.S., Chandrapala, J. et al. (2016). Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends Food Sci. Technol. 57: 178–187.

18 18 Farhan, A. and Hani, N.M. (2017). Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocolloids 64: 48–58.

19 19 Cano, A., Andres, M., Chiralt, A., and González-Martinez, C. (2020). Use of tannins to enhance the functional properties of protein based films. Food Hydrocolloids 100: 1–9.

20 20 Eghbal, N., Dumas, E., Yarmand, M.S. et al. (2019). Antimicrobial films based on pectin and sodium caseinate for the release of antifungal natamycin. J. Food Process. Preserv. 43 (7): 1–10.

21 21 Murmu, S.B. and Mishra, H.N. (2018). The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chem. 245: 820–828.

22 22 Andrade, M.A., Ribeiro-Santos, R., Guerra, M., and Sanches-Silva, A. (2019). Evaluation of the oxidative status of salami packaged with an active whey protein film. Foods 8 (9): 1–15.

23 23 Tavakolipour, H., Kalbasi-Ashtari, A., and Mokhtarian, M. (2020). Effects of coating pistachio kernels with mixtures of whey protein and selected herbal plant extracts on growth inhibition of Aspergillus flavus and prevention of aflatoxin during storage. J. Food Saf. 40: e12711.

24 24 Castro, F.V.R., Andrade, M.A., Silva, A.S. et al. (2019). The contribution of a whey protein film incorporated with green tea extract to minimize the lipid oxidation of salmon (Salmo salar L.). Foods 8 (8): 1–16.

25 25 Nallan Chakravartula, S.S., Cevoli, C., Balestra, F. et al. (2019). Evaluation of the effect of edible coating on mini-buns during storage by using NIR spectroscopy. J. Food Eng. 263 (April): 46–52.

26 26 Feng, Z., Wu, G., Liu, C. et al. (2018). Edible coating based on whey protein isolate nano fibrils for antioxidation and inhibition of product browning. Food Hydrocolloids 79: 179–188.

27 27 Phupoksakul, T., Leuangsukrerk, M., Somwangthanaroj, A. et al. (2017). Storage stability of packaged baby formula in poly(lactide)-whey protein isolate laminated pouch. J. Sci. Food Agric. 97 (10): 3365–3373.

28 28 Yadav, J.S.S., Yan, S., Pilli, S. et al. (2015). Cheese whey: a potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv.

29 29 de Castro, R.J.S., Domingues, M.A.F., Ohara, A. et al. (2017). Whey protein as a key component in food systems: physicochemical properties, production technologies and applications. Food Struct.

30 30 Murrieta-Martínez, C.L., Soto-Valdez, H., Pacheco-Aguilar, R. et al. (2018). Edible protein films: sources and behavior. Packag. Technol. Sci. 31 (3): 113–122.

31 31 Schmid, M. and Müller, K. (2019). Whey protein-based packaging films and coatings. In: Whey Proteins (eds. H.C. Deeth and N. Bansal), 407–437. Elsevier Inc.

32 32 Carvalho, R.A., Santos, T.A., de Azevedo, V.M. et al. (2018). Bio-nanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical and barrier properties. Polym. Int. 67 (4): 386–392.

33 33 Sun, B., Zhang, M., Shen, J. et al. (2019). Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 26 (14): 2485–2501.

34 34 Kalia, S., Dufresne, A., Cherian, B.M. et al. (2011). Cellulose-based bio- and nanocomposites: a review. Int. J. Polym. Sci. 2011: 1–35.

35 35 Zaman, A., Huang, F., Jiang, M. et al. (2020). Preparation, properties, and applications of natural cellulosic aerogels: a review. Energy Built Environ. 1: 60–76.

36 36 Zhang, X., Lin, F., Yuan, Q. et al. (2019). Hydrogen-bonded thin films of cellulose ethers and poly(acrylic acid). Carbohydr. Polym. 215: 58–62.

37 37 Clasen, C. and Kulicke, W.M. (2001). Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog. Polym. Sci. 26: 1839–1919.

38 38 Ma, Q. and Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sens. Actuators, B 235: 401–407. https://doi.org/10.1016/j.snb.2016.05.107.

39 39 Pérez-Gago, M.B., Fagundes, C., Monteiro, A.R., and Palou, L. (2016). Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose (HPMC)-based edible coatings against Alternaria alternata on cherry tomato fruit. In: IX Simpósio Ibérico Matur e Pós-Colheita, Lisboa, Port 2 a 4 novembro 2016, 107–114.

40 40 Fathi Achachlouei, B. and Zahedi, Y. (2018). Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr. Polym. 199 (February): 415–425.

41 41 Niu, X., Liu, Y., Song, Y. et al. (2018). Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydr. Polym. 183 (August 2017): 102–109.

42 42 Noorbakhsh-Soltani, S.M., Zerafat, M.M., and Sabbaghi, S. (2018). A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym. 189 (February): 48–55.

43 43 Halim, A.L.A., Kamari, A., and Phillip, E. (2018). Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. Int. J. Biol. Macromol. 120: 1119–1126.

44 44 Sinaga, M.Z.E., Gea, S., Panindia, N., and Sihombing, Y.A. (2018). The preparation of cellulose nanocomposite film from isolated cellulose of corncobs as food packaging. Orient. J. Chem. 34 (1): 562–567.

45 45 Mohammadi, H., Kamkar, A., and Misaghi, A. (2018). Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties. Carbohydr. Polym. 181 (August 2017): 351–357.

46 46 Sun, G., Chi, W., Zhang, C. et al. (2019 Sep). Developing a green film with pH-sensitivity and antioxidant activity based on к-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocolloids 94: 345–353.

47 47 Azarifar, M., Ghanbarzadeh, B., Sowti Khiabani, M. et al. (2019). The optimization of gelatin-CMC based active films containing chitin nanofiber and Trachyspermum ammi essential oil by response surface methodology. Carbohydr. Polym. 208 (December 2018): 457–468.

48 48 Yadav, N. and Kaur, R. (2019 Dec). Environment friendly qualitatively responsive ethyl cellulose films as smart food packaging. Mater. Express 9 (7): 792–800.

49 49 El Fawal, G., Hong, H., Song, X. et al. (2020). Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packag. Shelf Life 23.

50 50 Lopez-Polo, J., Silva-Weiss, A., Zamorano, M., and Osorio, F.A. (2020). Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: Food application. Carbohydr. Polym. 231: 1–10.

51 51 Abdou, E.S., Nagy, K.S.A., and Elsabee, M.Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. 99: 1359–1367.

52 52 Marei, N.H., El-Samie, E.A., Salah, T. et al. (2016). Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 82: 871–877.

53 53 Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31 (7): 603–632.

54 54 Mujtaba, M., Morsi, R.E., Kerch, G. et al. (2019). Current advancements in chitosan-based film production for food technology; a review. Int. J. Biol. Macromol. 121: 889–904.

55 55 Yoshida, C.M.P., Borges, V., Maciel, V. et al. (2014). Chitosan biobased and intelligent films : monitoring pH variations. LWT Food Sci. Technol. 55 (1): 83–89.

56 56 Ge, J., Yue, P., Chi, J. et al. (2018). Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids 74: 23–31.

57 57 Elsabee, M.Z. and Abdou, E.S. (2013). Chitosan based edible films and coatings: a review. Mater. Sci. Eng., C 33 (4): 1819–1841.

58 58 Rodríguez-Núñez, J.R., Madera-Santana, T.J., Sánchez-Machado, D.I. et al. (2014). Chitosan/hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. J. Polym. Environ. 22 (1): 41–51.

59 59 Badawy, M.E.I., Rabea, E.I., El-Nouby M, A.M. et al. (2017). Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. Int. J. Fruit Sci. 17 (2): 117–136.

60 60 Halász, K. and Csóka, L. (2018). Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag. Shelf Life 16 (September 2017): 185–193.

61 61 Remedio, L.N., Silva dos Santos, J.W., Vieira Maciel, V.B. et al. (2019). Characterization of active chitosan films as a vehicle of potassium sorbate or nisin antimicrobial agents. Food Hydrocolloids 87 (June 2018): 830–838.

62 62 Wu, C., Sun, J., Lu, Y. et al. (2019). In situ self-assembly chitosan/ɛ-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int. J. Biol. Macromol. 132: 385–392.

63 63 Gates, S.J. and Shukla, A. (2017). Layer-by-layer assembly of readily detachable chitosan and poly(acrylic acid) polyelectrolyte multilayer films. J. Polym. Sci., Part B: Polym. Phys. 55 (2): 127–131.

64 64 Galvis-Sánchez, A.C., Castro, M.C.R., Biernacki, K. et al. (2018). Natural deep eutectic solvents as green plasticizers for chitosan thermoplastic production with controlled/desired mechanical and barrier properties. Food Hydrocolloids 82: 478–489.

65 65 Chabbi, J., Jennah, O., Katir, N. et al. (2018). Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics. Carbohydr. Polym. 183: 287–293.

66 66 Fernandes, C., Calderon V., S., Ballesteros, L.F. et al. (2018). Carbon-based sputtered coatings for enhanced chitosan-based films properties. Appl. Surf. Sci. 433: 689–695.

67 67 Serio, A., Chaves-López, C., Sacchetti, G. et al. (2018). Chitosan coating inhibits the growth of Listeria monocytogenes and extends the shelf life of vacuum-packed pork loins at 4 °C. Foods 7 (10): 1–10.

68 68 Bilbao-Sainz, C., Chiou, B.S., Punotai, K. et al. (2018). Layer-by-layer alginate and fungal chitosan based edible coatings applied to fruit bars. J. Food Sci. 83 (7): 1880–1887.

69 69 Castelo Branco Melo, N.F., de MendonçaSoares, B.L., Marques Diniz, K. et al. (2018). Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biol. Technol. 139 (January): 56–66.

70 70 Gorgieva, S. and Kokol, V. (2011). Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. In: Biomaterials Applications for Nanomedicine (ed. R. Pignatello), 17–52. InTech.

71 71 Etxabide, A., Uranga, J., Guerrero, P., and de la Caba, K. (2017). Development of active gelatin films by means of valorisation of food processing waste: a review. Food Hydrocolloids 68: 192–198.

72 72 Bhagwat, P.K. and Dandge, P.B. (2018). Collagen and collagenolytic proteases: a review. Biocatal. Agric. Biotechnol. 15 (May): 43–55.

73 73 Da Silva, T.F. and Penna, A.L.B. (2012). Colágeno: Características químicas e propriedades funcionais. Rev. Inst. Adolfo Lutz 71 (3): 530–539.

74 74 Osawa, Y., Mizushige, T., Jinno, S. et al. (2018). Absorption and metabolism of orally administered collagen hydrolysates evaluated by the vascularly perfused rat intestine and liver in situ. Biomed Res. 39 (1): 1–11.

75 75 Correia, D.M., Padrão, J., Rodrigues, L.R. et al. (2013). Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polym. Test. 32 (5): 995–1000.

76 76 Lin, L., Regenstein, J.M., Lv, S. et al. (2017). An overview of gelatin derived from aquatic animals: properties and modification. Trends Food Sci. Technol. 68: 102–112.

77 77 Lv, L.C., Huang, Q.Y., Ding, W. et al. (2019). Fish gelatin: the novel potential applications. J. Funct. Foods 63: 1–14.

78 78 Aitboulahsen, M., Zantar, S., Laglaoui, A. et al. (2018). Gelatin-based edible coating combined with Mentha pulegium essential oil as bioactive packaging for strawberries. J. Food Qual. 2018.

79 79 dos Garcia, V.A., S., Borges, J.G., Osiro, D. et al. (2020). Orally disintegrating films based on gelatin and starch pregelatinized: new carriers of active compounds from acerola. Food Hydrocolloids 101: 1–12.

80 80 He, Q., Zhang, Y., Cai, X., and Wang, S. (2016). Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. Int. J. Biol. Macromol. 84: 153–160.

81 81 Wang, Z., Hu, S., Gao, Y. et al. (2017). Effect of collagen-lysozyme coating on fresh-salmon fillets preservation. LWT Food Sci. Technol. 75: 59–64.

82 82 Wang, Z., Hu, S., and Wang, H. (2017). Scale-up preparation and characterization of collagen/sodium alginate blend films. J. Food Qual. 2017: 1–11.

83 83 Wang, W., Liu, Y., Jia, H. et al. (2017). Effects of cellulose nanofibers filling and palmitic acid emulsions coating on the physical properties of fish gelatin films. Food Biophys. 12 (1): 23–32.

84 84 Batpho, K., Boonsupthip, W., and Rachtanapun, C. (2017). Antimicrobial activity of collagen casing impregnated with nisin against foodborne microorganisms associated with ready-to-eat sausage. Food Control 73: 1342–1352.

85 85 López-Carballo, G., Hernández-Muñoz, P., and Gavara, R. (2018). Photoactivated self-sanitizing chlorophyllin-containing coatings to prevent microbial contamination in packaged food. Coatings 8 (9): 1–14.

86 86 Amjadi, S., Emaminia, S., Nazari, M. et al. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as Food models. Food Bioprocess Technol. 12 (7): 1205–1219.

87 87 Bhuimbar, M.V., Bhagwat, P.K., and Dandge, P.B. (2019). Extraction and characterization of acid soluble collagen from fish waste: development of collagen-chitosan blend as food packaging film. J. Environ. Chem. Eng. 7 (2): 1–7.

88 88 Ławińska, K., Lasoń-Rydel, M., Gendaszewska, D. et al. (2019). Coating of seeds with collagen hydrolysates from leather waste. Fibres Text. East. Eur 27 (4): 59–64.

89 89 Scartazzini, L., Tosati, J.V., Cortez, D.H.C. et al. (2019). Gelatin edible coatings with mint essential oil (Mentha arvensis): film characterization and antifungal properties. J. Food Sci. Technol. 56 (9): 4045–4056.

90 90 Kouhdasht, A.M. and Nasab, M.M. (2020). Shelf-life extension of whole shrimp using an active coating containing fish skin gelatin hydrolysates produced by a natural protease. Food Sci. Nutr. 8: 214–223.

91 91 Ma, Y., Teng, A., Zhao, K. et al. (2020). A top-down approach to improve collagen film's performance: the comparisons of macro, micro and nano sized fibers. Food Chem. 309.

92 92 Moula Ali, A.M., de la Caba, K., Prodpran, T., and Benjakul, S. (2020). Quality characteristics of fried fish crackers packaged in gelatin bags: effect of squalene and storage time. Food Hydrocolloids 99.

93 93 Medic, J., Atkinson, C., and Hurburgh, C.R. (2014). Current knowledge in soybean composition. J. Am. Oil Chem. Soc. 91: 363–384.

94 94 Koshy, R.R., Mary, S.K., Thomas, S., and Pothan, L.A. (2015). Environment friendly green composites based on soy protein isolate - a review. Food Hydrocolloids 50: 174–192.

95 95 Nishinari, K., Fang, Y., Guo, S., and Phillips, G.O. (2014). Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocolloids 39: 301–318.

96 96 Abaee, A., Mohammadian, M., and Jafari, S.M. (2017). Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci. Technol. 70 (October): 69–81.

97 97 Tian, H., Guo, G., Fu, X. et al. (2018). Fabrication, properties and applications of soy-protein-based materials: a review. Int. J. Biol. Macromol. 120: 475–490.

98 98 Alipoormazandarani, N., Ghazihoseini, S., and Mohammadi, N.A. (2015). Preparation and characterization of novel bionanocomposite based on soluble soybean polysaccharide and halloysite nanoclay. Carbohydr. Polym. 134: 745–751.

99 99 Salarbashi, D., Mortazavi, S.A., Noghabi, M.S. et al. (2016). Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydr. Polym. 140: 220–227.

100 100 Akbariazam, M., Ahmadi, M., Javadian, N., and Mohammadi, N.A. (2016). Fabrication and characterization of soluble soybean polysaccharide and nanorod-rich ZnO bionanocomposite. Int. J. Biol. Macromol. 89: 369–375.

101 101 Oh, Y.A., Roh, S.H., and Min, S.C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids 58: 150–159.

102 102 Martelli-Tosi, M., Assis, O.B.G., Silva, N.C. et al. (2017). Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydr. Polym. 157: 512–520.

103 103 Salarbashi, D., Noghabi, M.S., Bazzaz, B.S.F. et al. (2017). Eco-friendly soluble soybean polysaccharide/nanoclay Na+bionanocomposite: properties and characterization. Carbohydr. Polym. 169: 524–532.

104 104 Ciannamea, E.M., Espinosa, J.P., Stefani, P.M., and Ruseckaite, R.A. (2018). Long-term stability of compression-molded soybean protein concentrate films stored under specific conditions. Food Chem. 243 (August 2017): 448–452.

105 105 Ghani, S., Barzegar, H., Noshad, M., and Hojjati, M. (2018). The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int. J. Biol. Macromol. 112: 197–202.

106 106 Ma, W., Rokayya, S., Xu, L. et al. (2018). Physical-chemical properties of edible film made from soybean residue and citric acid. J. Chem. 2018: 1–8.

107 107 Han, Y., Yu, M., and Wang, L. (2018). Bio-based films prepared with soybean by-products and pine (Pinus densiflora) bark extract. J. Cleaner Prod. 187: 1–8.

108 108 Zhang, L., Chen, F., Lai, S. et al. (2018). Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT 96: 604–611.

109 109 Barbut, S. and Harper, B.A. (2019). Dried Ca-alginate films: effects of glycerol, relative humidity, soy fibers, and carrageenan. LWT 103: 260–265.

110 110 González, A., Gastelú, G., Barrera, G.N. et al. (2019). Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocolloids 89: 758–764.

111 111 Merci, A., Marim, R.G., Urbano, A., and Mali, S. (2019). Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls. Food Packag. Shelf Life 20.

112 112 Liu, Q.R., Qi, J.R., Yin, S.W. et al. (2017). Preparation and stabilizing behavior of octenyl succinic esters of soybean soluble polysaccharide in acidified milk beverages. Food Hydrocolloids 63: 421–428.

113 113 Chivero, P., Gohtani, S., Ikeda, S., and Nakamura, A. (2014). The structure of soy soluble polysaccharide in aqueous solution. Food Hydrocolloids 35: 279–286.

114 114 Yuan, C., Chen, M., Luo, J. et al. (2017). A novel water-based process produces eco-friendly bio-adhesive made from green cross-linked soybean soluble polysaccharide and soy protein. Carbohydr. Polym. 169: 417–425.

115 115 Fátima Seibel, N. and Beléia, A.D.P. (2008). Carboidratos das fibras de cotilédones e proteínas de produtos derivados de soja (Glycine max (L.) Merril). Cienc. Tecnol. Aliment. 28 (3): 607–613.

116 116 Willats, W.G.T., Mccartney, L., Mackie, W., and Knox, J.P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47: 9–27.

117 117 Beckham, G.T., Johnson, C.W., Karp, E.M. et al. (2016). Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42: 40–53.

118 118 Ogunsona, E., Ojogbo, E., and Mekonnen, T. (2018). Advanced material applications of starch and its derivatives. Eur. Polym. J. 108: 570–581.

119 119 Copeland, L., Blazek, J., Salman, H., and Tang, M.C. (2009). Form and functionality of starch. Food Hydrocolloids 23: 1527–1534.

120 120 Thakur, R., Pristijono, P., Scarlett, C.J. et al. (2019). Starch-based films: major factors affecting their properties. Int. J. Biol. Macromol. 132: 1079–1089.

121 121 Saberi, B., Golding, J.B., Marques, J.R. et al. (2018). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biol. Technol. 137: 9–20.

122 122 Pellá, M.C.G., Silva, O.A., Pellá, M.G. et al. (2020). Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chem. 309.

123 123 Malherbi, N.M., Schmitz, A.C., Grando, R.C. et al. (2019). Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging. Food Packag. Shelf Life 19: 140–146.

124 124 Nawab, A., Alam, F., and Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato (Solanum lycopersicum) fruit. Int. J. Biol. Macromol. 103: 581–586. https://doi.org/10.1016/j.ijbiomac.2017.05.057.

125 125 Pająk, P., Socha, R., Łakoma, P., and Fortuna, T. (2017). Antioxidant properties of apple slices stored in starch-based films. Int. J. Food Prop. 20 (5): 1117–1128.

126 126 Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., and Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids 63 (February): 488–495.

127 127 Hassan, B., Chatha, S.A.S., Hussain, A.I. et al. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int. J. Biol. Macromol. 109: 1095–1107.

128 128 Cazón, P., Velazquez, G., Ramírez, J.A., and Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids 68: 136–148.

129 129 Sothornvit, R. and Krochta, J.M. (2005). Plasticizers in edible films and coatings. Innov. Food Packag.: 403–433.

130 130 Santacruz, S., Rivadeneira, C., and Castro, M. (2015). Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophobic tail and mechanical treatment. Food Hydrocolloids 49: 89–94.

131 131 Podshivalov, A., Zakharova, M., Glazacheva, E., and Uspenskaya, M. (2017). Gelatin/potato starch edible biocomposite films: correlation between morphology and physical properties. Carbohydr. Polym. 157: 1162–1172.

132 132 Sánchez-Ortega, I., García-Almendárez, B.E., Santos-López, E.M. et al. (2016). Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocolloids 52: 906–913.

133 133 Masood, F. (2017). Polyhydroxyalkanoates in the food packaging industry. In: Nanotechnology Applications in Food (eds. A.E. Oprea and A.M. Grumezescu), 153–177. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811942-6.00008-X.

134 134 Steinbüchel, A. and Lütke-eversloh, T. (2003). Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81–96.

135 135 Costa, J.A.V., Moreira, J.B., Lucas, B.F. et al. (2018). Recent advances and future perspectives of PHB production by cyanobacteria. Ind. Biotechnol. 14 (5): 249–256.

136 136 Favaro, L., Basaglia, M., Casella, S., and Food, A. (2018). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: areview. Biofuels, Bioprod. Biorefin.: 1–20.

137 137 Rodriguez-Perez, S., Serrano, A., Pantión, A.A., and Alonso-Fariñas, B. (2018). Challenges of scaling-up PHA production from waste streams. A review. J. Environ. Manage. 205: 215–230.

138 138 Costa, S.S., Miranda, A.L., de Morais, M.G. et al. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) — a review. Int. J. Biol. Macromol. 131: 536–547. https://doi.org/10.1016/j.ijbiomac.2019.03.099.

139 139 Pavan, F.A., Junqueira, T.L., Watanabe, M.D.B. et al. (2019). Economic analysis of polyhydroxybutyrate production by Cupriavidus necator using different routes for product recovery. Biochem. Eng. J. 146: 97–104. https://doi.org/10.1016/j.bej.2019.03.009.

140 140 Rosa, D.S., Lotto, N.T., Lopes, D.R., and Guedes, C.G.F. (2004). The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate). Polym. Test. 23: 3–8.

141 141 Koller, M. (2014). Poly(hydroxyalkanoates) for food packaging: application and attempts towards implementation. Appl. Food Biotechnol. 1 (1): 3–15.

142 142 Fukada, E. and Ando, Y. (1986). Piezoelectric properties of poly-β-hydroxybutyrate and copolymers of β-hydroxybutyrate and β-hydroxyvalerate. Int. J. Biol. Macromol. 8: 361–366.

143 143 Khosravi-darani, K. and Bucci, D.Z. (2015). Application of poly(hydroxyalkanoate) in Food packaging: improvements by nanotechnology. Chem. Biochem. Eng. 29 (2): 275–285.

144 144 Xu, P., Yang, W., Niu, D. et al. (2020). Multifunctional and robust polyhydroxyalkanoate nanocomposites with superior gas barrier, heat resistant and inherent antibacterial performances. Chem. Eng. J. 382: 122864. https://doi.org/10.1016/j.cej.2019.122864.

145 145 Miguel, R., Júnior, S., Araújo, T. et al. (2019). Thermal behavior of biodegradable bionanocomposites: influence of bentonite and vermiculite clays. J. Mater. Res. Technol. 8 (3): 3234–3243. https://doi.org/10.1016/j.jmrt.2019.05.011.

146 146 Arrieta, M.P., Alberto, D., Daniel, L. et al. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials 9 (346): 1–14.

147 147 Urbina, L., Eceiza, A., Gabilondo, N. et al. (2019). Valorization of apple waste for active packaging: multicomponent polyhydroxyalkanoate coated nanopapers with improved hydrophobicity and antioxidant capacity. Food Packag. Shelf Life 21: 100356. https://doi.org/10.1016/j.fpsl.2019.100356.

148 148 Sängerlaub, S., Brüggemann, M., Rodler, N. et al. (2019). Extrusion coating of paper with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)—packaging related functional properties. Coatings 457: 1–28.

149 149 Panaitescu, D.M., Ionita, E.R., Nicolae, C. et al. (2018). Poly(3-hydroxybutyrate) modified by nanocellulose and plasma treatment for packaging applications. Polymers (Basel) 10: 1–24.

150 150 Garrido-Miranda, K.A., Rivas, B.L., Pérez, M.A. et al. (2018). Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly (3-hydroxybutyrate)-thermoplastic starch. LWT Food Sci. Technol. 98 (January): 260–267. https://doi.org/10.1016/j.lwt.2018.08.046.

151 151 Ma, Y. and Wang, Y. (2018). Development of PLA - PHB - based biodegradable active packaging and its application to salmon. Packag. Technol. Sci. 31: 739–746.

152 152 Cherpinski, A., Gozutok, M., Sasmazel, H.T., and Lagaron, J.M. (2018). Electrospun oxygen scavenging films of poly (3-hydroxybutyrate) containing palladium nanoparticles for active packaging applications. Nanomaterials 8: 1–19.

153 153 Castro-Mayorga, J.L., Freitas, F., Reis, M. et al. (2018). Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications. Int. J. Biol. Macromol. 108: 426–435. https://doi.org/10.1016/j.ijbiomac.2017.12.007.

154 154 Fabra, M.J., Sánchez, G., López-Rubio, A., and Lagaron, J.M. (2014). Microbiological and ageing performance of polyhydroxyalkanoate-based multilayer structures of interest in food packaging. LWT Food Sci. Technol. 59: 760–767.

155 155 Murariu, M. and Dubois, P. (2016). PLA composites: from production to properties. Adv. Drug Delivery Rev. 107: 17–46.

156 156 Gerometta, M., Rocca-Smith, J.R., Domenek, S., and Karbowiak, T. (2019). Physical and chemical stability of PLA in food packaging. Reference module in food science. Elsevier 1: 1–11.

157 157 Nofar, M., Sacligil, D., Carreau, P.J. et al. (2019). Poly(lactic acid) blends: processing, properties and applications. Int. J. Biol. Macromol. 125: 307–360.

158 158 Javaherzadeh, R., Tabatabaee Bafroee, A.S., and Kanjari, A. (2020). Preservation effect of Polylophium involucratum essential oil incorporated poly lactic acid/nanochitosan composite film on shelf life and sensory properties of chicken fillets at refrigeration temperature. LWT Food Sci. Technol. 118 (October 2019): 108783.

159 159 Zhou, X., Yang, R., Wang, B., and Chen, K. (2019). Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydr. Polym. 222 (January): 1–7.

160 160 Martins, C., Vilarinho, F., Sanches Silva, A. et al. (2018). Active polylactic acid film incorporated with green tea extract: development, characterization and effectiveness. Ind. Crops Prod. 123: 100–110.

161 161 Altan, A., Aytac, Z., and Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids 81: 48–59.

162 162 Arfat, Y.A., Ahmed, J., Ejaz, M., and Mullah, M. (2018). Polylactide/graphene oxide nanosheets/clove essential oil composite films for potential food packaging applications. Int. J. Biol. Macromol. 107: 194–203.

163 163 Domenek, S., Nassar-Fernandes, S., and Ducruet, V. (2017). Rheology, mechanical properties, and barrier properties of poly(lactic acid). Adv. Polym. Sci. 279: 303–341.

164 164 Rasal, R.M., Janorkar, A.V., and Hirt, D.E. (2010). Poly(lactic acid) modifications. Prog. Polym. Sci. 35: 338–356.

165 165 Yang, W., Weng, Y., Puglia, D. et al. (2020). Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int. J. Biol. Macromol.

166 166 Jin, F.L., Hu, R.R., and Park, S.J. (2019). Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review. Compos. Part B Eng. 164: 287–296.

167 167 Liu, H. and Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). J. Polym. Sci., Part B: Polym. Phys. 49 (15): 1051–1083.

Nanotechnology-Enhanced Food Packaging

Подняться наверх