Читать книгу Nanotechnology-Enhanced Food Packaging - Группа авторов - Страница 57

References

Оглавление

1 1 Ai, Y. and Jane, J.-l. (2015). Gelatinization and rheological properties of starch. Starch - Stärke 67 (3–4): 213–224. https://doi.org/10.1002/star.201400201.

2 2 Magallanes-Cruz, P.A., Flores-Silva, P.C., and Bello-Perez, L.A. (2017). Starch structure influences its digestibility: a review. J. Food Sci. 82 (9): 2016–2023. https://doi.org/10.1111/1750-3841.13809.

3 3 Pérez, S. and Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch - Stärke 62 (8): 389–420. https://doi.org/10.1002/star.201000013.

4 4 Wang, S., Li, C., Copeland, L. et al. (2015). Starch retrogradation: a comprehensive review. Compr. Rev. Food Sci. Food Saf. 14 (5): 568–585. https://doi.org/10.1111/1541-4337.12143.

5 5 Odeku, O.A. (2013). Potentials of tropical starches as pharmaceutical excipients: a review. Starch - Stärke 65 (1–2): 89–106. https://doi.org/10.1002/star.201200076.

6 6 Le Corre, D. and Angellier-Coussy, H. (2014). Preparation and application of starch nanoparticles for nanocomposites: a review. React. Funct. Polym. 85: 97–120. https://doi.org/10.1016/j.reactfunctpolym.2014.09.020.

7 7 Jane, J.-l. (2009). Structural features of starch granules II, Chapter 6. In: Starch, 3e (eds. J. BeMiller and R. Whistler), 193–236. San Diego: Academic Press.

8 8 LeCorre, D., Bras, J., and Dufresne, A. (2011). Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanopart. Res. 13 (12): 7193–7208. https://doi.org/10.1007/s11051-011-0634-2.

9 9 LeCorre, D.S., Bras, J., and Dufresne, A. (2012). Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites. Macromol. Mater. Eng. 297 (10): 969–978. https://doi.org/10.1002/mame.201100317.

10 10 Acevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L.T. et al. (2018). Development of native and modified banana starch nanoparticles as vehicles for curcumin. Int. J. Biol. Macromol. 111: 498–504. https://doi.org/10.1016/j.ijbiomac.2018.01.063.

11 11 Kim, H.-Y., Park, S.S., and Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids Surf., B 126: 607–620. https://doi.org/10.1016/j.colsurfb.2014.11.011.

12 12 Ma, X., Jian, R., Chang, P.R., and Yu, J. (2008). Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9 (11): 3314–3320. https://doi.org/10.1021/bm800987c.

13 13 Qin, Y., Liu, C., Jiang, S. et al. (2016). Characterization of starch nanoparticles prepared by nanoprecipitation: influence of amylose content and starch type. Ind. Crops Prod. 87 (Supplement C): 182–190. https://doi.org/10.1016/j.indcrop.2016.04.038.

14 14 Qiu, C., Hu, Y., Jin, Z. et al. (2019). A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends Food Sci. Technol. 92: 138–151. https://doi.org/10.1016/j.tifs.2019.08.007.

15 15 Kumari, S., Yadav, B.S., and Yadav, R.B. (2020). Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: a review. Food Res. Int. 128: 108765. https://doi.org/10.1016/j.foodres.2019.108765.

16 16 Chin, S.F., Pang, S.C., and Tay, S.H. (2011). Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 86 (4): 1817–1819. https://doi.org/10.1016/j.carbpol.2011.07.012.

17 17 Sadeghi, R., Daniella, Z., Uzun, S., and Kokini, J. (2017). Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media. J. Cereal Sci. 76: 122–130. https://doi.org/10.1016/j.jcs.2017.05.020.

18 18 Hebeish, A., El-Rafie, M.H., El-Sheikh, M.A., and El-Naggar, M.E. (2014). Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant. J. Inorg. Organomet. Polym. Mater. 24 (3): 515–524. https://doi.org/10.1007/s10904-013-0004-x.

19 19 Liu, D., Wu, Q., Chen, H., and Chang, P.R. (2009). Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J. Colloid Interface Sci. 339 (1): 117–124. https://doi.org/10.1016/j.jcis.2009.07.035.

20 20 Escobar-Puentes, A.A., Rincón, S., García-Gurrola, A. et al. (2019). Preparation and characterization of succinylated nanoparticles from high-amylose starch via the extrusion process followed by ultrasonic energy. Food Bioprocess Technol. 12 (10): 1672–1682. https://doi.org/10.1007/s11947-019-02328-5.

21 21 Kaur, J., Kaur, G., Sharma, S., and Jeet, K. (2018). Cereal starch nanoparticles—a prospective food additive: a review. Crit. Rev. Food Sci. Nutr. 58 (7): 1097–1107. https://doi.org/10.1080/10408398.2016.1238339.

22 22 Song, D., Thio, Y.S., and Deng, Y. (2011). Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr. Polym. 85 (1): 208–214. https://doi.org/10.1016/j.carbpol.2011.02.016.

23 23 Homayouni, A., Sohrabi, M., Amini, M. et al. (2019). Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP. Mater. Sci. Eng., C 98: 185–196. https://doi.org/10.1016/j.msec.2018.12.128.

24 24 Tester, R.F., Karkalas, J., and Qi, X. (2004). Starch—composition, fine structure and architecture. J. Cereal Sci. 39 (2): 151–165. https://doi.org/10.1016/j.jcs.2003.12.001.

25 25 Akhavan, A. and Ataeevarjovi, E. (2012). The effect of gamma irradiation and surfactants on the size distribution of nanoparticles based on soluble starch. Radiat. Phys. Chem. 81 (7): 913–914. https://doi.org/10.1016/j.radphyschem.2012.03.004.

26 26 Lamanna, M., Morales, N.J., García, N.L., and Goyanes, S. (2013). Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydr. Polym. 97 (1): 90–97. https://doi.org/10.1016/j.carbpol.2013.04.081.

27 27 Minakawa, A.F.K., Faria-Tischer, P.C.S., and Mali, S. (2019). Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. Food Chem. 283: 11–18. https://doi.org/10.1016/j.foodchem.2019.01.015.

28 28 Ahmad, M., Gani, A., Masoodi, F.A., and Rizvi, S.H. (2020). Influence of ball milling on the production of starch nanoparticles and its effect on structural, thermal and functional properties. Int. J. Biol. Macromol. 151: 85–91. https://doi.org/10.1016/j.ijbiomac.2020.02.139.

29 29 Le Corre, D., Bras, J., and Dufresne, A. (2010). Starch nanoparticles: a review. Biomacromolecules 11 (5): 1139–1153. https://doi.org/10.1021/bm901428y.

30 30 Putaux, J.-L., Molina-Boisseau, S., Momaur, T., and Dufresne, A. (2003). Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4 (5): 1198–1202. https://doi.org/10.1021/bm0340422.

31 31 Angellier, H., Molina-Boisseau, S., Dole, P., and Dufresne, A. (2006). Thermoplastic starch−waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7 (2): 531–539. https://doi.org/10.1021/bm050797s.

32 32 Villa, C.C., Sanchez, L.T., and Rodriguez-Marin, N.D. (2019). Starch nanoparticles and Nanocrystals as bioactive molecule carriers. In: Polymers for Agri-food Applications (ed. T.J. Gutierrez), 91–98. Springer Nature https://doi.org/10.1007/978-3-030-19416-1_6.

33 33 Foresti, M.L., Williams, M.d.P., Martínez-García, R., and Vázquez, A. (2014). Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch. Carbohydr. Polym. 102: 80–87. https://doi.org/10.1016/j.carbpol.2013.11.013.

34 34 Kim, J.-Y., Park, D.-J., and Lim, S.-T. (2008). Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem. 85 (2): 182–187. https://doi.org/10.1094/CCHEM-85-2-0182.

35 35 Hao, Y., Chen, Y., Li, Q., and Gao, Q. (2018). Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydr. Polym. 184: 171–177. https://doi.org/10.1016/j.carbpol.2017.12.042.

36 36 Boufi, S., Bel Haaj, S., Magnin, A. et al. (2018). Ultrasonic assisted production of starch nanoparticles: structural characterization and mechanism of disintegration. Ultrason. Sonochem. 41: 327–336. https://doi.org/10.1016/j.ultsonch.2017.09.033.

37 37 Dai, L., Li, C., Zhang, J., and Cheng, F. (2018). Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydr. Polym. 180: 122–127. https://doi.org/10.1016/j.carbpol.2017.10.015.

38 38 Chen, G., Wei, M., Chen, J. et al. (2008). Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer 49 (7): 1860–1870. https://doi.org/10.1016/j.polymer.2008.02.020.

39 39 Angellier, H., Molina-Boisseau, S., and Dufresne, A. (2005). Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38 (22): 9161–9170. https://doi.org/10.1021/ma0512399.

40 40 Angellier, H., Molina-Boisseau, S., Lebrun, L., and Dufresne, A. (2005). Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules 38 (9): 3783–3792. https://doi.org/10.1021/ma050054z.

41 41 Angellier, H., Molina-Boisseau, S., and Dufresne, A. (2006). Waxy maize starch nanocrystals as filler in natural rubber. Macromol. Symp. 233 (1): 132–136. https://doi.org/10.1002/masy.200690009.

42 42 Alberto Jiménez, María José Fabra, Pau Talens, Amparo Chiralt, Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids, Food Hydrocolloids, Volume 26, Issue 1, 2012, Pages 302-310.

43 43 Campos, C.A., Gerschenson, L.N., and Flores, S.K. (2011). Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol.4: 849–875. https://doi.org/10.1007/s11947-010-0434-1.

44 44 Pinzon, M.I., Garcia, O.R., and Villa, C.C. (2018). The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films. J. Sci. Food Agric. 98: 4042–4049. https://doi.org/10.1002/jsfa.8915.

45 45 Sánchez-Ortega, I., García-Almendárez, B.E., Santos-López, E.M. et al. (2016). Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocolloids 52: 906–913.

46 46 Li, X., Qiu, C., Ji, N. et al. (2015). Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr. Polym. 121: 155–162. https://doi.org/10.1016/j.carbpol.2014.12.040.

47 47 Nieto-Suaza, L., Acevedo-Guevara, L., Sánchez, L.T. et al. (2019). Characterization of aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. Food Struct.: 100131. https://doi.org/10.1016/j.foostr.2019.100131.

48 48 Silva, A.P.M., Oliveira, A.V., Pontes, S.M.A. et al. (2019). Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydr. Polym. 211: 209–216. https://doi.org/10.1016/j.carbpol.2019.02.013.

49 49 Tian, H. and Xu, G. (2011). Processing and characterization of glycerol-plasticized soy protein plastics reinforced with citric acid-modified starch nanoparticles. J. Polym. Environ. 19 (3): 582–588. https://doi.org/10.1007/s10924-011-0304-6.

50 50 Zheng, H., Ai, F., Chang, P.R. et al. (2009). Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym. Compos. 30 (4): 474–480. https://doi.org/10.1002/pc.20612.

51 51 Condés, M.C., Añón, M.C., Mauri, A.N., and Dufresne, A. (2015). Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids 47: 146–157. https://doi.org/10.1016/j.foodhyd.2015.01.026.

52 52 Dai, L., Zhang, J., and Cheng, F. (2019). Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int. J. Biol. Macromol. 132: 897–905. https://doi.org/10.1016/j.ijbiomac.2019.03.197.

53 53 Mukurumbira, A.R., Mellem, J.J., and Amonsou, E.O. (2017). Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohydr. Polym. 165: 142–148. https://doi.org/10.1016/j.carbpol.2017.02.041.

54 54 Rostamabadi, H., Falsafi, S.R., and Jafari, S.M. (2019). Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends Food Sci. Technol. 88: 397–415. https://doi.org/10.1016/j.tifs.2019.04.004.

55 55 Farrag, Y., Ide, W., Montero, B. et al. (2018). Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int. J. Biol. Macromol. 114: 426–433. https://doi.org/10.1016/j.ijbiomac.2018.03.134.

56 56 Bose, S., Du, Y., Takhistov, P., and Michniak-Kohn, B. (2013). Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm. 441 (1): 56–66. https://doi.org/10.1016/j.ijpharm.2012.12.013.

57 57 Jeszka-Skowron, M., Krawczyk, M., and Zgoła-Grześkowiak, A. (2015). Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: influence of citric acid addition on extraction of metals. J. Food Compos. Anal. 40: 70–77. https://doi.org/10.1016/j.jfca.2014.12.015.

58 58 Anand, P., Kunnumakkara, A.B., Newman, R.A., and Aggarwal, B.B. (2007). Bioavailability of curcumin: problems and promises. Mol. Pharmaceutics 4 (6): 807–818. https://doi.org/10.1021/mp700113r.

59 59 Maghsoudi, A., Yazdian, F., Shahmoradi, S. et al. (2017). Curcumin-loaded polysaccharide nanoparticles: optimization and anticariogenic activity against Streptococcus mutans. Mater. Sci. Eng., C 75: 1259–1267. https://doi.org/10.1016/j.msec.2017.03.032.

60 60 Mai, Z., Chen, J., He, T. et al. (2017). Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Adv. 7 (3): 1724–1734. https://doi.org/10.1039/C6RA25314H.

61 61 Menon, V.P. and Sudheer, A.R. (2007). Antioxidant and anti-inflammatory properties of curcumin. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease (eds. B.B. Aggarwal, Y.-J. Surh and S. Shishodia), 105–125. Boston, MA: Springer US.

62 62 Mirzaei, H., Shakeri, A., Rashidi, B. et al. (2017). Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother. 85: 102–112. https://doi.org/10.1016/j.biopha.2016.11.098.

63 63 Nelson, K.M., Dahlin, J.L., Bisson, J. et al. (2017). The essential medicinal chemistry of curcumin. J. Med. Chem. 60 (5): 1620–1637. https://doi.org/10.1021/acs.jmedchem.6b00975.

64 64 Oliveira, A.S., Sousa, E., Vasconcelos, M.H., and Pinto, M. (2015). Curcumin: a natural lead for potential new drug candidates. Curr. Med. Chem. 22: 4196.

65 65 Sahu, A.K., Mishra, J., and Mishra, A.K. (2020). Introducing tween-curcumin niosomes: preparation, characterization and microenvironment study. Soft Matter 16 (7): 1779–1791. https://doi.org/10.1039/C9SM02416F.

66 66 Stanić, Z. (2017). Curcumin, a compound from natural sources, a true scientific challenge – a review. Plant Foods Hum. Nutr. 72 (1): 1–12. https://doi.org/10.1007/s11130-016-0590-1.

67 67 Chin, S.F., Mohd Yazid, S.N.A., and Pang, S.C. (2014). Preparation and characterization of starch nanoparticles for controlled release of curcumin. Int. J. Polym. Sci. 2014: 8. https://doi.org/10.1155/2014/340121.

68 68 Santoyo-Aleman, D., Sanchez, L.T., and Villa, C.C. (2019). Citric-acid modified banana starch nanoparticles as a novel vehicle for β-carotene delivery. J. Sci. Food Agric. https://doi.org/10.1002/jsfa.9918.

69 69 Pang, S.C., Tay, S.H., and Chin, S.F. (2014). Facile synthesis of curcumin-loaded starch-maleate nanoparticles. J. Nanomater. 2014: 7. https://doi.org/10.1155/2014/824025.

70 70 de Oliveira, N.R., Fornaciari, B., Mali, S., and Carvalho, G.M. (2017). Acetylated starch-based nanoparticles: synthesis, characterization, and studies of interaction with antioxidants. Starch - Stärke 70 (3–4): 1700170. https://doi.org/10.1002/star.201700170.

71 71 Ahmad, M., Mudgil, P., Gani, A. et al. (2019). Nano-encapsulation of catechin in starch nanoparticles: characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem. 270: 95–104. https://doi.org/10.1016/j.foodchem.2018.07.024.

72 72 Shabana, S., Prasansha, R., Kalinina, I. et al. (2018). Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2018.07.023.

73 73 Ballard, J.M., Zhu, L., Nelson, E.D., and Seburg, R.A. (2007). Degradation of vitamin D3 in a stressed formulation: the identification of esters of vitamin D3 formed by a transesterification with triglycerides. J. Pharm. Biomed. Anal. 43 (1): 142–150. https://doi.org/10.1016/j.jpba.2006.06.036.

74 74 Mahmoodani, F., Perera, C.O., Fedrizzi, B. et al. (2017). Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chem. 219: 373–381. https://doi.org/10.1016/j.foodchem.2016.09.146.

75 75 Walia, N., Dasgupta, N., Ranjan, S. et al. (2017). Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason. Sonochem. 39: 623–635. https://doi.org/10.1016/j.ultsonch.2017.05.021.

76 76 Hasanvand, E., Fathi, M., Bassiri, A. et al. (2015). Novel starch based nanocarrier for vitamin D fortification of milk: production and characterization. Food Bioprod. Process. 96: 264–277. https://doi.org/10.1016/j.fbp.2015.09.007.

Nanotechnology-Enhanced Food Packaging

Подняться наверх