Читать книгу Biogeography - Группа авторов - Страница 35
2.7. References
ОглавлениеBeaumont, M.A. (2010). Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst., 41, 379–406.
Bielejec, F., Lemey, P., Baele, G., Rambaut A., Suchard, M.A. (2014). Inferring heterogeneous evolutionary processes through time: From sequence substitution to phylogeography. Syst. Biol., 63, 493–504.
Bloomquist, E.W., Lemey, P., Suchard, M.A. (2010). Three roads diverged? Routes to phylogeographic inference. Trends Ecol. Evol., 25, 626–632.
Bremer, K. and Janssen, T. (2006). Gondwanan origin of major monocot groups inferred from dispersal-vicariance analysis. Aliso, 22, 22–27.
Bribiesca-Contreras, G., Verbruggen, H., Hugall, A.F., O’Hara, T.D. (2019). Global biogeographic structuring of tropical shallow-water brittle stars. J. Biogeogr., 46, 1287–1299.
Brooks, D.R. (2005). Historical biogeography in the age of complexity: Expansion and integration. Rev. Mex. Biodivers., 76, 79–94.
Buerki, S., Forest, F., Alvarez, N., Nylander, J.A.A., Arrigo, N., Sanmartin, I. (2011). An evaluation of new parsimony-based versus parametric inference methods in biogeography: A case study using the globally distributed plant family Sapindaceae. J. Biogeogr., 38, 531–550.
Cybis, G.B., Sinsheimer, J.S., Lemey, P., Suchard, M.A. (2013). Graph hierarchies for phylogeography. Phil. Trans. R. Soc. B, 368, 20120206.
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. John Murray, London.
De Maio, N., Wu, C.-H., O’Reilly, K.M., Wilson, D. (2015). New routes to phylogeography: A Bayesian structured coalescent approximation. PLoS Genet., 11(8), e1005421.
Donoghue, M.J. (2008). A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci., USA, 105, 11549–11555.
Donoghue, M.J. and Moore, B.R. (2003). Toward an integrative historical biogeography. Integr. Comp. Biol., 43, 261–270.
Donoghue, M.J. and Smith, S.A. (2004). Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. Trans. R. Soc. London Biol., 359, 1633–1644.
Faith, D.P. and Cranston, P.S. (1991). Could a cladogram this short have arisen by chance alone? On permutation tests for cladisticand permutation structure. Cladistics, 7, 1–28.
Faria, N.R., Suchard, M.A., Rambaut, A., Streicker, D.G., Lemey, P. (2013). Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. Phil. Trans. R. Soc. B., 368, 20120196.
Fitzjohn, R.G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Eco. Evol., 3(6), 1084–1092.
Fonseca, E.M., Colli, G.R., Werneck, F.P., Carstens, B.C. (2020). Phylogeographic model selection using convolutional neural networks. bioRxiv. doi: https://doi.org/10.1101/2020.09.11.291856.
Goldberg, E. and Igic, B. (2012). Tempo and mode in plant breeding system evolution. Evolution, 66, 3701–3709.
Goldberg, E.E., Lancaster, L.T., Ree, R.H. (2011). Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol., 60, 451–465.
Goodman, S. (1999). Toward evidence-based medical statistics: The Bayes factor. Ann. Intern. Med., 130, 1005–1013.
Gotelli, N.J., Anderson, M.J., Arita, H.T., Chao, A., Colwell, R.K., Connolly, S.R., Currie, D.J., Dunn, R.R., Graves, G.R., Green, J.L., Grytnes, J.-A., Jiang, Y.-H., Jetz, W., Lyons, S.K., McCain, C.M., Magurran, A.E., Rahbek, C., Rangel, T.F.L.V.B., Soberón, J., Webb, C.O., Willig, M.R. (2009). Patterns and causes of species richness: A general simulation model for macroecology. Ecol. Lett, 12, 873–886.
Harris, A.J. and Xiang, Q.Y. (2009). Estimating ancestral distributions of lineages with uncertain sister groups: A statistical approach to dispersal vicariance analysis and a case using Aesculus L. (Sapindaceae) including fossils. J. Syst. Evol., 47, 349–368.
Hickerson, M.J., Stahl, E., Takebayashi, N. (2007). msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation. BMC Bioinform., 8, 268.
Huelsenbeck, J.P., Rannala, B., Masly, J.P. (2000). Accommodating phylogenetic uncertainty in evolutionary studies. Science, 288, 2349–2350.
Humphries, C.J. and Parenti, L. (1999). Cladistic Biogeography, 2nd edition. Oxford University Press, New York.
Klopfstein, S., Vilhelmsen, L., Ronquist, F. (2015). Nonstationary Markov model detects directional evolution in hymenopteran morphology. Syst. Biol., 64, 1089–1103.
Kodandaramaiah, U. (2010). Use of dispersal-vicariance analysis in biogeography – A critique. J. Biogeogr., 37, 3–11.
Landis, M.J. (2017). Biogeographic dating of speciation times using paleogeographically informed processes. Syst. Biol., 66, 128–144.
Landis, M.J., Matzke, N.J., Moore, B.R., Huelsenbeck, J.P. (2013). Bayesian analysis of biogeography when the number of areas is large. Syst. Biol., 62, 789–804.
Lemey, P., Rambaut, A., Drummond, A.J., Suchard, M.A. (2009). Bayesian phylogeography finds its roots. PLoS Comput. Biol., 5.
Lemey, P., Rambaut, A., Welch, J.J., Suchard, M.A. (2010). Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol., 27, 1877–1885.
Lieberman, B.S. (2003). Paleobiogeography: The relevance of fossils to biogeography. Annu. Rev. Ecol. Evol. Syst., 34, 51–69.
Maddison, W.P., Midford, P.E., Otto, S.P. (2007). Estimating a binary character’s effect on speciation and extinction. Syst. Biol., 56, 701–710.
Mairal, M., Pokorny, L., Aldasoro, J.J., Alarcón, M., Sanmartín, I. (2015). Ancient vicariance and climate-driven extinction explain continental-wide disjunctions in Africa: The case of the rand flora genus Canarina (Campanulaceae). Mol. Ecol., 24, 1335–1354.
Marshall, C.J. and Liebherr, J.K. (2000). Cladistic biogeography of the Mexican transition zone. J. Biogeogr., 27, 203–216.
Massana, K.A., Beaulieu, J.M., Matzke, N.J., O’Meara, B.C. (2015). Non-null effects of the null range in biogeographic models: Exploring parameter estimation in the DEC model. bioRxiv, 026914.
Mastretta-Yanes, A., Moreno-Letelier, A., Pinñero, D., Jorgensen, T.H., Emerson, B.C. (2015). Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J. Biogeogr., 42, 1586–1600.
Matzke, N.J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst Biol., 63, 951–970.
McRae, B.H., Dickson, B.G., Keitt, T.H., Shah, V.B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89, 2712–2724.
Meseguer, A.S., Lobo, J.M., Ree, R., Beerling, D.J., Sanmartín, I. (2015). Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: The case of Hypericum (Hypericaceae). Syst. Biol., 64, 215–232.
Moore, B.R. and Donoghue, M.J. (2007). Correlates of diversification in the plant clade Dipsacales: Geographic movement and evolutionary innovations. Am. Nat., 170, 28–55.
Muller, N.T., Rasmussen, D.A., Stadler, T. (2017). The structured coalescent and its approximations. Mol. Biol. Evol., 34, 2970–2981.
Nelson, G. and Platnick, N.I. (1981). Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York, NY.
Nylander, J.A.A., Olsson, U., Alstrom, P., Sanmartín, I. (2008). Accounting for phylogenetic uncertainty in biogeography: A Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Syst Biol., 57, 257–68.
Overcast, I., Emerson, B.C., Hickerson, M.J. (2019). An integrated model of population genetics and community ecology. J. Biogeogr., 46, 816–829.
Page, R.D.M. (1993). Genes, organisms, and areas: The problem of multiple lineages. Syst. Biol., 42, 77–84.
Pagel, M., Meade, A., Barker, D. (2004). Bayesian estimation of ancestral character states on phylogenies. Syst. Biol., 53, 673–684.
Prieto-Márquez, A. (2010). Global historical biogeography of hadrosaurid dinosaurs. Zool. J. Linn. Soc., 159, 503–525.
Quinn, S., McFrederick, D., Taylor, R. (2013). Evolutionary history of nematodes associated with sweat bees. Mol. Phylogen. Evol., 66, 847–856.
Quintero, I. and Landis, M.J. (2020). Interdependent phenotypic and biogeographic evolution driven by biotic interactions. Syst. Biol., 69, 739–755.
Rangel, T.F., Edwards, N.E., Holden, P.B., Diniz-Filho, J.A.F., Gosling, W.D., Coelho, M.T.P., Cassemiro, F.A.S., Rahbek, C., Colwell, R.K. (2018). Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361, eaar5452.
Ree, R.H. and Sanmartín, I. (2009). Prospects and challenges for parametric models in historical biogeographical inference. J. Biogeogr., 36, 1211–1220.
Ree, R.H. and Sanmartín, I. (2018). Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr., 45, 741–749.
Ree, R.H. and Smith S.A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol., 57, 4–14.
Ree, R.H., Moore, B.R., Webb, C.O., Donoghue, M.J. (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution, 59, 2299–2311.
Robert, E., Adrian, K., Raftery, E. (1995). Bayes factors. J. Am. Stat. Assoc., 90, 773–795.
Ronquist, F. (1997). Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol., 46, 195–203.
Ronquist, F. (2003). Parsimony analysis of coevolving associations. In Tangled Trees: Phylogeny, Cospeciation, and Coevolution, RDM, 22–64. University of Chicago Press, Chicago, IL.
Ronquist, F. (2004). Bayesian inference of character evolution. Trends Ecol. Evol., 19, 475–481.
Ronquist, F. and Sanmartín, I. (2011). Phylogenetic methods in biogeography. Annu. Rev. Ecol., Evol., and Syst., 42, 441–464.
Ronquist, F., Kudlicka, J., Senderov, V., Borgström, J., Lartillot, N., Lundén, D., Murray, L., Schön, T.B., Broman, D. (2020). Universal probabilistic programming: A powerful new approach to statistical phylogenetics [Online]. Available at: bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.154443, June 18, 2020.
Sanmartín, I. (2012). Historical biogeography: Evolution in time and space. Evo. Edu. Outreach, 5, 555–568.
Sanmartín, I. (2020). Breaking the chains of parsimony: The development of parametric methods in historical biogeography. In Biogeography: An Ecological and Evolutionary Approach, 10th edition, Cox, B.C., Moore, P.D., Ladle, R. (eds). Wiley, Hoboken, NJ.
Sanmartín, I. and Ronquist, F. (2004). Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Syst. Biol., 53, 216–243.
Sanmartín, I., Enghoff, H., Ronquist, F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc., 73, 345–390.
Sanmartín, I., Wanntorp, L., Winkworth, R. (2007). West wind drift revisited: Testing for directional dispersal in the southern hemisphere using event-based tree fitting. J. Biogeogr., 34, 398–416.
Sanmartín, I., Van Der Mark, P., Ronquist, F. (2008). Inferring dispersal: A Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands. J. Biogeogr., 35, 428–449.
Sanmartín, I., Anderson, C.L., Alarcon, M., Ronquist, F., Aldasoro, J.A. (2010). Bayesian island biogeography in a continental setting: The Rand Flora case. Biol. Lett., 6, 703–707.
Smith, S.A. and Donoghue, M.J. (2010). Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera (Caprifoliaceae, Dipsacales). Syst. Biol., 59, 322–341.
Sukumaran, J., Economo, E.P., Knowles, L. (2016). Machine learning biogeographic processes from biotic patterns: A new trait-dependent dispersal and diversification model with model choice by simulation-trained discriminant analysis. Syst. Biol., 65, 525–545.
Tagliacollo, V.A., Duke-Sylvester, S.M., Matamoros, W.A., Chakrabarty, P., Albert, J.S. (2015). Coordinated dispersal and pre-Isthmian assembly of the Central American ichthyofauna. Syst. Biol., 66, 183–196.
Wojciki, M. and Brooks, D.R. (2005). PACT: An efficient and powerful algorithm for generating area cladograms. J. Biogeogr., 32, 755–774.
Yu, Y., Harris, A.J., Blair C., He, X. (2010). RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogen. Evol., 87, 46–49.