Читать книгу Computational Modeling and Simulation Examples in Bioengineering - Группа авторов - Страница 33
References
Оглавление1 1 McGloughlin, T.M. and Doyle, B.J. (2010). New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain. Arterioscler. Thromb. Vasc. Biol. 30: 1687–1694. https://doi.org/10.1161/ATVBAHA.110.204529.
2 2 Fleming, C., Whitlock, E.P., Beil, T., and Lederle, F.A. (2005). Review: screening for abdominal aortic aneurysm: a best‐evidence systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 142: 203–211.
3 3 O'Gara, T.P. (2003). Aortic aneurysm. Circulation 107: e43–e45.
4 4 Minino, A.M., Heron, M.P., Murphy, S.L., and Kochanek, K.D. (2007). Deaths: final data for 2004. Nat. Vital. Stat. Rep. 55: 1–119.
5 5 Sakalihasan, N., Limet, R., and Defawe, O.D. (2005). Abdominal aortic aneurysm. Lancet 365 (9470): 1577–1589.
6 6 Thompson, M.M. (2003). Controlling the expansion of abdominal aortic aneurysms. Br. J. Surg. 90: 897–898.
7 7 Thompson, M.M. (2003). Infrarenal abdominal aortic aneurysms. Curr. Treat Opt. Cardiovasc. Med. 5 (2): 137–146.
8 8 Thompson, R.W. and Baxter, B.T. (1999). MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann. N. Y. Acad. Sci. 878: 159–178.
9 9 Bown, M.J., Sutton, A.J., Bell, P.R., and Sayers, R.D. (2002). A meta‐analysis of 50 years of ruptured abdominal aortic aneurysm repair. Br. J. Surg. 89: 714–730.
10 10 Venkatasubramaniam, A.K., Fagan, M.J., Mehta, T. et al. (2004). A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non‐ruptured Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 28 (2): 168–176.
11 11 Choke, E., Cockerill, G., Wilson, W.R.W. et al. (2005). A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 30: 227–244.
12 12 Fillinger, M.F., Marra, S.P., Raghavan, M.L., and Kennedy, F.E. (2003). Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37: 724–732.
13 13 Fillinger, M.F., Raghavan, M.L., Marra, S.P. et al. (2002). In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36: 589–597.
14 14 Upchurch, G.R. Jr. and Schaub, T.A. (2006). Abdominal aortic aneurysm. Am. Fam. Phys. 73: 1198–1204.
15 15 Sonesson, B., Sandgren, T., and Lanne, T. (1999). Abdominal aortic aneurysm wall mechanics and their relation to risk of rupture. Eur. J. Vasc. Endovasc. Surg. 18: 487–493.
16 16 Doyle, B.J., Callanan, A., Walsh, M.T. et al. (2009). A finite element analysis rupture index (FEARI) as an additional tool for abdominal aortic aneurysm rupture prediction. Vasc. Dis. Prev. 6: 114–121.
17 17 Doyle, B.J., Cloonan, A.J., Walsh, M.T. et al. (2010). Identification of rupture locations in patient‐specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43: 1408–1416.
18 18 Doyle, B.J., Corbett, T.J., Callanan, A. et al. (2009). An experimental and numerical comparison of the rupture locations of an abdominal aortic aneurysm. J. Endovasc. Ther. 16: 322–335.
19 19 Doyle, B.J., Grace, P.A., Kavanagh, E.G. et al. (2009). Improved assessment and treatment of abdominal aortic aneurysms: the use of 3D reconstructions as a surgical guidance tool in endovascular repair. Ir. J. Med. Sci. 178: 321–328.
20 20 Biasetti, J. and Gasser, T.C. (2012). A fluido‐chemical model to predict the growth of intra‐luminal thrombus in abdominal aortic aneurysms, ECCOMAS 2012. 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria (10–14 September 2012).
21 21 Biasetti, J., Gasser, T.C., Auer, M. et al. (2010). Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism. Ann. Biomed. Eng. 38 (2): 380–390.
22 22 Georgakarakos, E., Ioannou, C., Kamarianakis, Y. et al. (2010). The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur. J. Vasc. Endovasc. Surg. 39: 42–48.
23 23 Georgakarakos, E., Ioannou, C.V., Papaharilaou, Y. et al. (2013). Peak wall stress does not necessarily predict the location of rupture in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 39 (3): 302–304.
24 24 Vorp, D.A. (2007). Biomechanics of abdominal aortic aneurysm. J. Biomech. 40: 1887–1902.
25 25 VASCOPS Vascular Diagnostics (2007). On‐line survey: clinical assessment of AAA rupture risk: are biomechanical predictors needed? http://www.vascops.com (accessed 12 September 2021).
26 26 Alcorn, H.G., Wolfson, S.K. Jr., Sutton‐Tyrrell, K. et al. (1996). Risk factors for abdominal aortic aneurysms in older adults enrolled in The Cardiovascular Health Study. Arterioscler. Thromb. Vasc. Biol. 16: 963–970.
27 27 Derubertis, B.G., Trocciola, S.M., Ryer, E.J. et al. (2007). Abdominal aortic aneurysm in women: prevalence, risk factors, and implications for screening. J. Vasc. Surg. 46: 630–635.
28 28 Forsdahl, S.H., Singh, K., Solberg, S. et al. (2009). Risk factors for abdominal aortic aneurysms: a 7‐year prospective study: the Tromso Study, 1994–2001. Circulation 119: 2202–2208.
29 29 Svensjo, S., Bjorck, M., and Wanhainen, A. (2013). Current prevalence of abdominal aortic aneurysm in 70‐year‐old women. Br. J. Surg. 100: 367–372.
30 30 Lederle, F.A., Johnson, G.R., Wilson, S.E. et al. (2001). Abdominal aortic aneurysm in women. J. Vasc. Surg. 34: 122–126.
31 31 Singh, K., Bonaa, K.H., Jacobsen, B.K. et al. (2001). Prevalence of and risk factors for abdominal aortic aneurysms in a population‐based study: the Tromso Study. Am. J. Epidemiol. 154: 236–244.
32 32 Kent, K.C., Zwolak, R.M., Egorova, N.N. et al. (2010). Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J. Vasc. Surg. 52: 539–548.
33 33 Lederle, F.A., Johnson, G.R., Wilson, S.E. et al. (2000). The aneurysm detection and management study screening program: validation cohort and final results. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. Arch. Intern. Med. 160: 1425–1430.
34 34 Lederle, F.A., Nelson, D.B., and Joseph, A.M. (2003). Smokers' relative risk for aortic aneurysm compared with other smoking‐related diseases: a systematic review. J. Vasc. Surg. 38: 329–334.
35 35 Jahangir, E., Lipworth, L., Edwards, T.L. et al. (2015). Smoking, sex, risk factors and abdominal aortic aneurysms: a prospective study of 18 782 persons aged above 65 years in the Southern Community Cohort Study. J. Epidemiol. Community Health 69 (5): 481–488.
36 36 Darling, R.C., Messina, C.R., Brewster, D.C., and Ottinger, L.W. (1977). Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56 (Suppl. 3): 161–164.
37 37 Stringfellow, M.M., Lawrence, P.F., and Stringfellow, R.G. (1987). The influence of aorta‐aneurysm geometry upon stress in the aneurysm wall. J. Surg. Res. 42: 425–433.
38 38 Vorp, D.A., Raghavan, M.L., and Webster, M. (1998). Mechanical wall stress in abdominal aortic aneurysm: inuence of diameter and asymmetry. J. Vasc. Surg. 27: 632–639.
39 39 Raghavan, M.L. and Vorp, D.A. (2000). Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33 (4): 475–482.
40 40 Raghavan, M.L., Kratzberg, J., Castro de Tolosa, E.M. et al. (2006). Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39: 3010–3016.
41 41 Raghavan, M.L., Vorp, D.A., Federle, M.P. et al. (2000). Wall stress distribution on three‐dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31: 760–769.
42 42 Vande Geest, J.P., Sacks, M.S., and Vorp, D.A. (2006). A planar biaxial constitutive relation for the luminal layer of intra‐luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39: 2347–2354.
43 43 Scotti, C.M., Jimenez, J., Muluk, S.C., and Finol, E.A. (2008). Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction. Comput. Methods Biomech. Biomed. Eng. 11 (3): 301–322.
44 44 Scotti, C.M., Shkolnik, A.D., Muluk, S., and Finol, E.A. (2005). Fluid–structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed. Eng. Online 4 (4): 64.
45 45 Finol, E.A. and Amon, C.H. (2001). Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Eng. 123: 474–484.
46 46 Finol, E.A. and Amon, C.H. (2002). Flow‐induced wall shear stress in abdominal aortic aneurysms: part I – steady flow hemodynamics. Comput. Methods Biomech. Biomed. Eng. 5 (4): 309–318.
47 47 Federico, S. and Gasser, T.C. (2010). Nonlinear elasticity of biological tissues with statistical fiber orientation. J. R. Soc. Interf. 7 (47): 955–966.
48 48 Hardin, R.H. and Sloane, N.J.A. (1996). McLaren's improved snub cube and other new spherical designs in three dimentions. Discret. Comput. Geom. 15: 429–441.
49 49 Zhang, Y., Barocas, V.H., Berceli, S.A. et al. (2016). Multi‐scale modeling of the cardiovascular system: disease development, progression, and clinical intervention. Ann. Biomed. Eng. 44 (9): 2642–2660.
50 50 Guidoboni, G., Glowinski, R., Cavallini, N. et al. (2009). A kinematically coupled time‐splitting scheme for fluid–structure interaction in blood flow. Appl. Math. Lett. 22 (5): 684–688.
51 51 Guidoboni, G., Glowinski, R., Cavallini, N., and Čanić, S. (2009). Stable loosely‐coupled‐type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228 (18): 6916–6937.
52 52 Bukač, M., Čanić, S., Glowinski, R. et al. (2013). Fluid–structure interaction in blood flow capturing non‐zero longitudinal structure displacement. J. Comput. Phys. 235: 515–541.
53 53 Quarteroni, A. and Formaggia, L. (2004). Mathematical modelling and numerical simulation of the cardiovascular system in modelling of living systems. In: 12 of Handbook of Numerical Analysis, 3–127. Amsterdam: North‐Holland.
54 54 Formaggia, L., Gerbeau, J.F., Nobile, F., and Quarteroni, A. (2001). On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191 (6–7): 561–582.
55 55 Formaggia, L., Lamponi, D., and Quarteroni, A. One‐dimensional models for blood flow in arteries. J. Eng. Math. 47 (3–4): 251–276.
56 56 Nobile, F. and Vergara, C. (2008). An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30 (2): 731–763.
57 57 Causin, P., Gerbeau, J.F., and Nobile, F. (2005). Added‐mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194 (42–44): 4506–4527.
58 58 Čanić, S., Mikelić, A., and Tambača, J. (2005). A two‐dimensional effective model describing fluid–structure interaction in blood flow: analysis, simulation and experimental validation. Comptes Rendus. 333 (12): 867–883.
59 59 Čanić, S., Tambača, J., Guidoboni, G. et al. (2006). Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67 (1): 164–193.
60 60 Čanić, S., Hartley, C.J., Rosenstrauch, D. et al. (2006). Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Ann. Biomed. Eng. 34 (4): 575–575.
61 61 Heil, A., Hazel, L., and Boyle, J. (2008). Solvers for large‐displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43 (1): 91–101.
62 62 MacSweeney, S.T.R., Powell, J.T., and Greenhalgh, R.M. (1994). Pathogenesis of abdominal aortic aneurysm. Br. J. Surg. 81: 935–941.
63 63 van't Veer, M., Buth, J., Merkx, M. et al. (2008). Biomechanical properties of abdominal aortic aneurysms assessed by simultaneously measured pressure and volume changes in humans. J. Vasc. Surg. 48 (6): 1401–1407.
64 64 Ganten, M.K., Krautter, U., von Tengg‐Kobligk, H. et al. (2008). Quantification of aortic distensibility in abdominal aortic aneurysm using ecg‐gated multi‐detector computed tomography. Vasc. Intervent. 18 (5): 966–973.
65 65 Molacek, J., Baxa, J., Houdek, K. et al. (2011). Assessment of abdominal aortic aneurysm wall distensibility with electrocardiography‐gated computed tomography. Ann. Vasc. Surg. 25 (8): 1036–1042.
66 66 Di Puccio, F., Celi, S., and Forte, P. (2012). Review of experimental investigations on compressibility of arteries and the introduction of a new apparatus. Exp. Mech. 52 (7): 1–8. https://doi.org/10.1007/s11340‐012‐9614‐4.
67 67 Humphrey, J.D. and Yin, F.C. (1987). A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys. J. 52 (4): 563–570.
68 68 Ogden, R.W. (2009). Anisotropy and nonlinear elasticity in arterial wall mechanics. In: Biomechanical Modelling at the Molecular, Cellular and Tissue Levels. CISM Courses and Lectures, vol. 508 (eds. G.A. Holzapfel, R.W. Ogden, F. Pfeiffer, et al.), 179–258. Vienna: Springer.
69 69 Vande Geest, J.P., Sacks, M.S., and Vorp, D.A. (2004). Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 12: 815–822.
70 70 Vande Geest, J.P., Sacks, M.S., and Vorp, D.A. (2006). The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39: 1324–1334.
71 71 Koncar, I., Nikolic, D., Pantovic, S. et al. (2013). Modeling of abdominal aortic aneurysm rupture by using bubble inflation test. Bioinform. Bioeng. (BIBE) https://doi.org/10.1109/BIBE.2013.6701612.
72 72 Vande Geest, J.P., Di Martino, E.S., Bohra, A. et al. (2006). A biomechanics‐based rupture potential index for abdominal aortic aneurysm risk assessment. Ann. N. Y. Acad. Sci. 1085: 11–21.
73 73 Thubrikar, M.J., Labrosse, M., Robicsek, F. et al. (2001). Mechanical properties of abdominal aortic aneurysm wall. J. Med. Eng. Techn. 25 (4): 133–142.
74 74 Stamatopoulos, C., Mathioulakis, D.S., Papaharilaou, Y., and Katsamouris, A. (2011). Experimental unsteady flow study in a patientspecific abdominal aortic aneurysm model. Exp. Fluids 50 (6): 1695–1709.
75 75 Holzapfel, G.A. (2006). Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238 (2): 290–302.
76 76 Simsek, F.G. and Kwon, Y.W. (2015). Investigation of material modeling in fluid–structure interaction analysis of an idealized three layered abdominal aorta: aneurysm initiation and fully developed aneurysms. J. Biol. Phys. 41 (2): 173–201.
77 77 Taghizadeh, H., Tafazzoli‐Shadpour, M., Shadmehr, M., and Fatouraee, N. (2015). Evaluation of biaxial mechanical properties of aortic media based on the lamellar microstructure. Materials 8 (1): 302–316.
78 78 Sokolis, D.P., Kefaloyannis, E.M., Kouloukoussa, M. et al. (2006). A structural basis for the aortic stress–strain relation in uniaxial tension. J. Biomech. 39 (9): 1651–1662.
79 79 Karimi, A., Navidbakhsh, M., Shojaei, A., and Faghihi, S. (2013). Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater. Sci. Eng. C 33 (5): 2550–2554.
80 80 Taylor, C.A. and Humphrey, J.D. (2009). Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput. Methods Appl. Mech. Eng. 198 (45–46): 3514–3523.
81 81 Raut, S.S., Chandra, S., Shum, J., and Finol, E.A. (2013). The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment. Ann. Biomed. Eng. 41 (7): 1459–1477.
82 82 Stenbaek, J., Kalin, B., and Swedenborg, J. (2000). Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 20 (5): 466–469.
83 83 Li, Z.‐Y., U‐King‐Im, J., Tang, T.Y. et al. (2008). Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J. Vasc. Surg. 47 (5): 928–936.
84 84 Di Martino, E.S. and Vorp, D.A. (2003). Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31 (7): 804–809.
85 85 O'Leary, S.A., Kavanagh, E.G., Grace, P.A. et al. (2014). The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: classification of morphology and the determination of layer and region specific properties. J. Biomech. 47 (6): 1430–1437.
86 86 Tong, J., Schriefl, A.J., Cohnert, T., and Holzapfel, G.A. (2013). Gender differences in biomechanical properties, thrombus age, mass fraction and clinical factors of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 45 (4): 364–372.
87 87 Speelman, L., Bosboom, E.M.H., Schurink, G.W.H. et al. (2008). Patient‐specific AAA wall stress analysis: 99‐percentile versus peak stress. Eur. J. Vasc. Endovasc. Surg. 36: 668–676.
88 88 Speelman, L., Bosboom, E.M.H., Schurink, G.W.H., Jacobs, M.J.H.M., and van de Vosse, F.N. (2008). AAA Growth Predicted with Wall Stress. Poster Session Presented at Conference. Mate Poster Award 2008: 13th Annual Poster Contest.
89 89 Speelman, L., Hellenthal, F.A., Pulinx, B. et al. (2010). The influence of wall stress on AAA growth and biomarkers. Eur. J. Vasc. Surg. 39: 410–416.
90 90 Kontopodis, N., Metaxa, E., Papaharilaou, Y. et al. (2013). Changes in geometric configuration and biomechanical parameters of a rapidly growing abdominal aortic aneurysm may provide insight in aneurysms natural history and rupture risk. Theor. Biol. Med. Model. 10: 67.
91 91 Yushkevich, P.A., Piven, J., Hazlett, H.C. et al. (2006). User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31: 1116–1128.
92 92 Anton, R., Chen, C.Y., Hung, M.Y. et al. (2015). Experimental and computational investigation of the patient‐specific abdominal aortic aneurysm pressure field. Comput. Methods Biomech. Biomed. Eng. 18 (9): 981–992. https://doi.org/10.1080/10255842.2013.865024.
93 93 Frauenfelder, T., Lotfey, M., Boehm, T., and Wildermuth, S. (2006). Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent‐graft implantation. Cardiovasc. Intervent. Radiol. 29: 613–623.
94 94 Peattie, R.A., Riehle, T.J., and Bluth, E.I. (2004). Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow‐induced wall stresses. J. Biomech. Eng. 126: 438–446.
95 95 Dorfmann, A., Wilson, C., Edgar, E.S., and Peattie, R.A. (2010). Evaluating patient‐specific abdominal aortic aneurysm wall stress based on flow‐induced loading. Biomech. Model. Mechanobiol. 9: 127–139.
96 96 Polzer, S., Gasser, T.C., Markert, B. et al. (2012). Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed. Eng. Online 11: 62.
97 97 Gasser, T.C., Gorgulu, G., Folkesson, M., and Swedenborg, J. (2008). Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48: 179–188.
98 98 Gasser, T.C., Auer, M., Labruto, F. et al. (2010). Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40: 176–185.
99 99 Wang, D.H.J., Makaroun, M.S., Webster, M.W., and Vorp, D.A. (2002). Effect of intraluminal thrombus on wall stress in patient specific models of abdominal aortic aneurysm. J. Vasc. Surg. I36: 598–604.
100 100 Wang, D.H., Makaroun, M.S., Webster, M.W., and Vorp, D.A. (2001). Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123: 536–539.
101 101 Ayyalasomayajula, A., Vande Geest, J.P., and Simon, B.R. (2010). Porohyperelastic finite element modeling of abdominal aortic aneurysms. J. Biomech. Eng. 132: 104502.
102 102 Baek, S., Zambrano, B.A., Choi, J., and Lim, C.‐Y. (2014). Growth prediction of abdominal aortic aneurysms and its association of intraluminal thrombus. 11th World Congress on Computational Mechanics (WCCM XI); 5th European Conference on Computational Mechanics (ECCM V); 6th European Conference on Computational Fluid Dynamics (ECFD VI), Barcelona, Spain (20–25 July 2014).
103 103 Zeinali‐Davarani, S. and Baek, S. (2012). Medical image‐based simulation of abdominal aortic aneurysm growth. Mech. Res. Commun. 42: 107–117.
104 104 Vorp, D.A., Lee, P.C., Wang, D.H. et al. (2001). Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34: 291–299.
105 105 Biasetti, J. (2013). Physics of blood flow in arteries and its relation to intra‐luminal thrombus and atherosclerosis. Doctoral dissertation no. 84. KTH School of Engineering Sciences, Department of Solid Mechanics – vascuMECH, KTH Royal Institute of Technology, SE‐100 44 Stockholm, Sweden.
106 106 Jones, K.C. and Mann, K.G. (1994). A model for the tissue factor pathway to thrombin.II. A mathematical simulation. J. Biol. Chem. 269: 23367–23373.
107 107 Filipovic, N., Milasinovic, D., Zdravkovic, N. et al. (2011). Impact of aortic repair based on flow field computer simulation within the thoracic aorta. Comput. Methods Prog. Biomed. 101 (3): 243–252.
108 108 Filipovic, N., Mijailovic, S., Tsuda, A., and Kojic, M. (2006). An implicit algorithm within the arbitrary Lagrangian–Eulerian formulation for solving incompressible fluid flow with large boundary motions. Comp. Meth. Appl. Mech. Engrg. 195: 6347–6361.
109 109 Filipovic, N., Kojic, M., Ivanovic, M. et al. (2006). MedCFD, Specialized CFD Software for Simulation of Blood Flow Through Arteries. Serbia: University of Kragujevac.
110 110 Perktold, K. and Rappitsch, G. (1995). Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28: 845–856.
111 111 Figueroa, C.A., Taylor, C.A., Yeh, V. et al. (2009). Effect of curvature on displacement forces acting on aortic endografts: a 3‐dimensional computational analysis. J. Endovasc. Ther. 16: 284–294.
112 112 Figueroa, C.A., Taylor, C.A., Chiou, A.J. et al. (2009). Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J. Endovasc. Ther. 16: 350–358.
113 113 Filipovic, N., Rosic, M., Tanaskovic, I. et al. (2012). ARTreat project: Three‐dimensional numerical simulation of plaque formation and development in the arteries. IEEE Trans. Inf. Technol. Biomed. 16 (2): 272–278.
114 114 Filipovic, N. and Schima, H. (2011). Numerical simulation of the flow field within the aortic arch during cardiac assist. Artif. Organs 35 (4): 73–83.
115 115 Veljkovic, D., Filipovic, N., and Kojic, M. (2012). The effect of asymmetry and axial prestraining on the amplitude of mechanical stresses in abdominal aortic aneurysm. J. Mech. Med. Biol. 12 (5): 1250089.
116 116 Krsmanovic, D., Koncar, I., Petrovic, D. et al. (2012). Computer modelling of maximal displacement forces in endoluminal thoracic aortic stent graft. Comput. Methods Biomech. Biomed. Eng. 17 (9): 1012–1020.
117 117 Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 2e. New York, NY, USA: Springer.
118 118 Kolachalama, V.B., Bressloff, N.W., and Nair, P.B. (2007). Mining data from hemodynamic simulations via Bayesian emulation. Biomed. Eng. Online 6: 47.
119 119 Martufi, G., DiMartino, E.S., Amon, C.H. et al. (2009). Three‐dimensional geometrical characterization of abdominal aortic aneurysms: image‐based wall thickness distribution. J. Biomech. Eng. 131 (6): 061015.
120 120 Shum, J., Martufi, G., di Martino, E. et al. (2011). Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39 (1): 277–286.
121 121 Filipovic, N., Ivanovic, M., Krstajic, D., and Kojic, M. (2011). Hemodynamic flow modeling through an abdominal aorta aneurysm using data mining tools. IEEE Trans. Inf. Technol. Biomed. 15 (2): 189–194.
122 122 Pannu, H., Fadulu, V.T., Chang, J. et al. (2005). Mutations in transforming growth factor‐beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 112: 513–520.
123 123 Zhu, L., Vranckx, R., Van Kien, P.K. et al. (2006). Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat. Genet. 38: 343–349.
124 124 Renard, M., Callewaert, B., Baetens, M. et al. (2013). Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFß signaling in FTAAD. Int. J. Cardiol. 165 (2): 314–321.
125 125 Guo, D.C., Pannu, H., Tran‐Fadulu, V. et al. (2007). Mutations in smooth muscle alpha‐actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat. Genet. 39: 1488–1493.
126 126 van de Laar, I.M.B.H., Oldenburg, R.A., Pals, G. et al. (2011). Mutations in SMAD3 cause a syndrome form of aortic aneurysms and dissections with early‐onset osteoarthritis. Nat. Genet. 43: 121–126.
127 127 Ku, D.N. (1997). Blood flow in arteries. Annu. Rev. Fluid Mech. 29: 399–434.