Читать книгу Electromagnetic Vortices - Группа авторов - Страница 26

References

Оглавление

1 1 Poynting, J.H. (1909). The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London 82 (557): 560–567.

2 2 Beth, R.A. (1936). Mechanical detection and measurement of the angular momentum of light. Physical Review 50: 115–125.

3 3 Allen, L., Beijersbergen, M.W., Spreeuw, R., and Woerdman, J. (1992). Orbital angular momentum of light and the transformation of Laguerre‐Gaussian laser modes. Physical Review A 45 (11): 8185.

4 4 Drysdale, T.D., Allen, B., Stevens, C. et al. (2018). How orbital angular momentum modes are boosting the performance of radio links. IET Microwaves, Antennas & Propagation 12 (10): 1625–1632.

5 5 Veysi, M., Guclu, C., Capolino, F., and Rahmat‐Samii, Y. (2018). Revisiting orbital angular momentum beams: Fundamentals, reflectarray generation, and novel antenna applications. IEEE Antennas and Propagation Magazine 60 (2): 68–81.

6 6 Cheng, W., Zhang, W., Jing, H. et al. (2019). Orbital angular momentum for wireless communications. IEEE Wireless Communications 26 (1): 100–107.

7 7 Gori, F., Guattari, G., and Padovani, C. (1987). Bessel‐Gauss beams. Optics Communications 64 (6): 491–495.

8 8 Karimi, E., Zito, G., Piccirillo, B. et al. (2007). Hypergeometric‐Gaussian modes. Optics Letters 32 (21): 3053–3055.

9 9 Maurer, C., Jesacher, A., Fürhapter, S. et al. (2007). Tailoring of arbitrary optical vector beams. New Journal of Physics 9 (3): 78.

10 10 Allen, L., Padgett, M., and Babiker IV, M. (1999). The orbital angular momentum of light, Progress in Optics. Elsevier 39: 291–372.

11 11 Willner, A.E., Huang, H., Yan, Y. et al. (2015). Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 7 (1): 66–106.

12 12 Padgett, M.J., Miatto, F.M., Lavery, M.P. et al. (2015). Divergence of an orbital‐angular‐momentum‐carrying beam upon propagation. New Journal of Physics 17 (2): 023011.

13 13 Beijersbergen, M., Coerwinkel, R., Kristensen, M., and Woerdman, J. (1994). Helical‐wavefront laser beams produced with a spiral phaseplate. Optics Communications 112 (5‐6): 321–327.

14 14 Trichili, A., Rosales‐Guzmán, C., Dudley, A. et al. (2016). Optical communication beyond orbital angular momentum. Scientific Reports 6: 27674.

15 15 Oldoni, M., Spinello, F., Mari, E. et al. (2015). Space‐division demultiplexing in orbital‐angular‐momentum‐based mimo radio systems. IEEE Transactions on Antennas and Propagation 63 (10): 4582–4587.

16 16 Djordjevic, I.B. (2011). Deep‐space and near‐earth optical communications by coded orbital angular momentum (OAM) modulation. Optics Express 19 (15): 14277–14289.

17 17 Gibson, G., Courtial, J., Padgett, M.J. et al. (2004). Free‐space information transfer using light beams carrying orbital angular momentum. Optics Express 12 (22): 5448–5456.

18 18 Ge, X., Zi, R., Xiong, X. et al. (2017). Millimeter wave communications with OAM‐SM scheme for future mobile networks. IEEE Journal on Selected Areas in Communications 35 (9): 2163–2177.

19 19 Turnbull, G., Robertson, D., Smith, G. et al. (1996). The generation of free‐space Laguerre‐Gaussian modes at millimetre‐wave frequencies by use of a spiral phaseplate. Optics Communications 127 (4‐6): 183–188.

20 20 Yao, A.M. and Padgett, M.J. (2011). Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 3 (2): 161–204.

21 21 Gradshteyn, I.S. and Ryzhik, I.M. (2014). Table of Integrals, Series, and Products, 7e. Academic press.

22 22 Rahmat‐Samii, Y. (1988). Reflector antennas. In: Antenna Handbook: Theory, Applications, and Design (eds. S.W. Lee and Y.T. Lo), 949–1072. Boston, MA: Springer US.

23 23 Tamburini, F., Mari, E., Sponselli, A. et al. (2012). Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics 14 (3): 033001.

24 24 Born, M. and Wolf, E. (2013). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6e. Elsevier.

25 25 Balanis, C.A. (2016). Antenna Theory: Analysis and Design, 4e. John Wiley & Sons.

26 26 Friis, H.T. (1946). A note on a simple transmission formula. Proceedings of the IRE 34 (5): 254–256.

27 27 Cho, Y.H. and Byun, W.J. (2019). Generalized friis transmission equation for orbital angular momentum radios. IEEE Transactions on Antennas and Propagation 67 (4): 2423–2429.

28 28 Nguyen, D.K., Pascal, O., Sokoloff, J. et al. (2015). Antenna gain and link budget for waves carrying orbital angular momentum. Radio Science 50 (11): 1165–1175.

29 29 D. K. Nguyen, O. Pascal, J. Sokoloff, et al. (2014). Discussion about the link budget for electromagnetic wave with orbital angular momentum, The 8th European Conference on Antennas and Propagation (EuCAP 2014). IEEE, pp. 1117–1121.

30 30 Cagliero, A., De Vita, A., Gaffoglio, R., and Sacco, B. (2015). A new approach to the link budget concept for an OAM communication link. IEEE Antennas and Wireless Propagation Letters 15: 568–571.

31 31 Craeye, C. (2015). On the transmittance between OAM antennas. IEEE Transactions on Antennas and Propagation 64 (1): 336–339.

32 32 C. Rui, Z. Hong, M. Marco, et al. (2019). Orbital angular momentum waves: Generation, detection and emerging applications, arXiv preprint arXiv:1903.07818.

33 33 Edfors, O. and Johansson, A.J. (2011). Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Transactions on Antennas and Propagation 60 (2): 1126–1131.

34 34 Tamagnone, M., Craeye, C., and Perruisseau‐Carrier, J. (2012). Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’. New Journal of Physics 14 (11): 118001.

35 35 Morabito, A.F., Di Donato, L., and Isernia, T. (2018). Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory. IEEE Antennas and Propagation Magazine 60 (2): 59–67.

36 36 Xie, G., Li, L., Ren, Y. et al. (2015). Performance metrics and design considerations for a free‐space optical orbital‐angular‐momentum multiplexed communication link. Optica 2 (4): 357–365.

37 37 Gao, X., Song, X., Zheng, Z. et al. (2020). Misalignment measurement of orbital angular momentum signal based on spectrum analysis and image processing. IEEE Transactions on Antennas and Propagation 68 (1): 521–526.

38 38 Anguita, J.A., Neifeld, M.A., and Vasic, B.V. (2008). Turbulence‐induced channel crosstalk in an orbital angular momentum‐multiplexed free‐space optical link. Applied Optics 47 (13): 2414–2429.

39 39 Tyler, G.A. and Boyd, R.W. (2009). Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Optics Letters 34 (2): 142–144.

40 40 Paterson, C. (2005). Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters 94 (15): 153901.

41 41 Rodenburg, B., Lavery, M.P., Malik, M. et al. (2012). Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Optics Letters 37 (17): 3735–3737.

42 42 Ren, Y., Huang, H., Xie, G. et al. (2013). Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Optics Letters 38 (20): 4062–4065.

43 43 Malik, M., O’Sullivan, M., Rodenburg, B. et al. (2012). Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Optics Express 20 (12): 13195–13200.

44 44 Chaibi, A., Mafusire, C., and Forbes, A. (2013). Propagation of orbital angular momentum carrying beams through a perturbing medium. Journal of Optics 15 (10): 105706.

45 45 Trichili, A., Salem, A.B., Dudley, A. et al. (2016). Encoding information using Laguerre Gaussian modes over free space turbulence media. Optics Letters 41 (13): 3086–3089.

46 46 Willner, A.E., Ren, Y., Xie, G. et al. (2017). Recent advances in high‐capacity free‐space optical and radio‐frequency communications using orbital angular momentum multiplexing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2087): 20150439.

47 47 Yan, Y., Li, L., Xie, G. et al. (2016). Multipath effects in millimetre‐wave wireless communication using orbital angular momentum multiplexing. Scientific Reports 6: 33482.

48 48 Vicente‐Lozano, M., Franceschetti, G., Ares‐Pena, F.J., and Moreno‐Piquero, E. (2002). Analysis and synthesis of a printed array for satellite communication with moving vehicles. IEEE Transactions on Antennas and Propagation 50 (11): 1555–1559.

49 49 Pan, Y.‐M. and Leung, K.W. (2012). Wideband circularly polarized dielectric bird‐nest antenna with conical radiation pattern. IEEE Transactions on Antennas and Propagation 61 (2): 563–570.

50 50 Lau, K. and Luk, K. (2006). A wideband circularly polarized conical‐beam patch antenna. IEEE Transactions on Antennas and Propagation 54 (5): 1591–1594.

51 51 Lin, W. and Wong, H. (2014). Circularly polarized conical‐beam antenna with wide bandwidth and low profile. IEEE Transactions on Antennas and Propagation 62 (12): 5974–5982.

52 52 Kai, C., Huang, P., Shen, F. et al. (2017). Orbital angular momentum shift keying based optical communication system. IEEE Photonics Journal 9 (2): 1–10.

53 53 Trichili, A., Park, K.‐H., Zghal, M. et al. (2019). Communicating using spatial mode multiplexing: Potentials, challenges and perspectives. IEEE Communications Surveys & Tutorials 21 (4): 3175–3203.

54 54 Krenn, M., Fickler, R., Fink, M. et al. (2014). Communication with spatially modulated light through turbulent air across Vienna. New Journal of Physics 16 (11): 113028.

55 55 Krenn, M., Handsteiner, J., Fink, M. et al. (2016). Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences 113 (48): 13648–13653.

56 56 Molisch, A. (2005). Wireless Communications. Wiley‐IEEE Press.

57 57 Goldsmith, A. (2005). Wireless Communications. USA: Cambridge University Press.

58 58 Lee, D., Sasaki, H., Fukumoto, H. et al. (2017). Orbital angular momentum (OAM) multiplexing: An enabler of a new era of wireless communications. IEICE Transactions on Communications 100 (7): 1044–1063.

59 59 Cheng, W., Zhang, W., Jing, H. et al. (2018). Orbital angular momentum for wireless communications. IEEE Wireless Communications 26 (1): 100–107.

60 60 Huang, H., Xie, G., Yan, Y. et al. (2014). 100 Tbit s−1 free‐space data link enabled by three‐dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters 39 (2): 197–200.

61 61 Wang, J., Yang, J.‐Y., Fazal, I.M. et al. (2012). Terabit free‐space data transmission employing orbital angular momentum multiplexing. Nature Photonics 6 (7): 488.

62 62 Thidé, B., Then, H., Sjöholm, J. et al. (2007). Utilization of photon orbital angular momentum in the low‐frequency radio domain. Physical Review Letters 99 (8): 087701.

63 63 Zhang, W., Zheng, S., Hui, X. et al. (2016). Mode division multiplexing communication using microwave orbital angular momentum: An experimental study. IEEE Transactions on Wireless Communications 16 (2): 1308–1318.

64 64 Yan, Y., Xie, G., Lavery, M.P. et al. (2014). High‐capacity millimetre‐wave communications with orbital angular momentum multiplexing. Nature Communications 5: 4876.

65 65 Willner, A. (2019). Optical Fiber Telecommunications, vol. 11. Academic Press.

66 66 Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper ‐ Cisco, https://www.cisco.com/c/en/us/solutions/collateral/service‐provider/global‐cloud‐index‐gci/white‐paper‐c11‐738085.html#_Toc503317520 (accessed 2 March 2020).

67 67 Richardson, D., Fini, J., and Nelson, L.E. (2013). Space‐division multiplexing in optical fibres. Nature Photonics 7 (5): 354.

68 68 Saridis, G.M., Alexandropoulos, D., Zervas, G., and Simeonidou, D. (2015). Survey and evaluation of space division multiplexing: From technologies to optical networks. IEEE Communications Surveys & Tutorials 17 (4): 2136–2156.

69 69 Rusch, L.A., Rad, M., Allahverdyan, K. et al. (2018). Carrying data on the orbital angular momentum of light. IEEE Communications Magazine 56 (2): 219–224.

70 70 Li, G., Bai, N., Zhao, N., and Xia, C. (2014). Space‐division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics 6 (4): 413–487.

71 71 Ramachandran, S. and Kristensen, P. (2013). Optical vortices in fiber. Nanophotonics 2 (5‐6): 455–474.

72 72 Li, Y., Jin, L., Wu, H. et al. (2017). Superposing multiple LP modes with microphase difference distributed along fiber to generate oam mode. IEEE Photonics Journal 9 (2): 1–9.

73 73 Ramachandran, S., Gregg, P., Kristensen, P., and Golowich, S. (2015). On the scalability of ring fiber designs for OAM multiplexing. Optics Express 23 (3): 3721–3730.

74 74 Chen, S. and Wang, J. (2017). Theoretical analyses on orbital angular momentum modes in conventional graded‐index multimode fibre. Scientific Reports 7 (1): 1–15.

75 75 Li, S. and Wang, J. (2014). A compact trench‐assisted multi‐orbital‐angular‐momentum multi‐ring fiber for ultrahigh‐density space‐division multiplexing (19 rings × 22 modes). Scientific Reports 4: 3853.

76 76 Dashti, P.Z., Alhassen, F., and Lee, H.P. (2006). Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Physical Review Letters 96 (4): 043604.

77 77 Bozinovic, N., Kristensen, P., and Ramachandran, S. (2011). Long‐range fiber‐transmission of photons with orbital angular momentum. In: CLEO: Science and Innovations, CTuB1. Optical Society of America.

78 78 Bozinovic, N., Golowich, S., Kristensen, P., and Ramachandran, S. (2012). Control of orbital angular momentum of light with optical fibers. Optics Letters 37 (13): 2451–2453.

79 79 Ramachandran, S., Bozinovic, N., Gregg, P. et al. (2012). Optical vortices in fibres: A new degree of freedom for mode multiplexing. In: 2012 38th European Conference and Exhibition on Optical Communications, 1–3. IEEE.

80 80 Bozinovic, N., Yue, Y., Ren, Y. et al. (2013). Terabit‐scale orbital angular momentum mode division multiplexing in fibers. Science 340 (6140): 1545–1548.

81 81 Ingerslev, K., Gregg, P., Galili, M. et al. (2018). 12 mode, WDM, MIMO‐free orbital angular momentum transmission. Optics Express 26 (16): 20225–20232.

82 82 Huang, H., Milione, G., Lavery, M.P. et al. (2015). Mode division multiplexing using an orbital angular momentum mode sorter and MIMO‐DSP over a graded‐index few‐mode optical fibre. Scientific Reports 5 (1): 1–7.

83 83 Zhu, L., Wang, A., Chen, S. et al. (2017). Orbital angular momentum mode groups multiplexing transmission over 2.6‐km conventional multi‐mode fiber. Optics Express 25 (21): 25637–25645.

84 84 Wang, A., Zhu, L., Wang, L. et al. (2018). Directly using 8.8‐km conventional multi‐mode fiber for 6‐mode orbital angular momentum multiplexing transmission. Optics Express 26 (8): 10038–10047.

85 85 Zhu, L., Wang, A., Chen, S. et al. (2018). Orbital angular momentum mode multiplexed transmission in heterogeneous few‐mode and multi‐mode fiber network. Optics Letters 43 (8): 1894–1897.

86 86 Li, S. and Wang, J. (2013). Multi‐orbital‐angular‐momentum multi‐ring fiber for high‐density space‐division multiplexing. IEEE Photonics Journal 5 (5): 7101007–7101007.

87 87 Li, S. and Wang, J. (2015). Supermode fiber for orbital angular momentum (OAM) transmission. Optics Express 23 (14): 18736–18745.

88 88 Papathanasopoulos, A., Rahmat‐Samii, Y., Garcia, N., and Chisum, J.D. (2020). A novel collapsible flat‐layered metamaterial gradient‐refractive‐index (GRIN) lens antenna. IEEE Transactions on Antennas and Propagation 68 (3): 1312–1321.

89 89 Wei, X., Liu, C., Niu, L. et al. (2015). Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Applied Optics 54 (36): 10641–10649.

90 90 Zhang, C. and Ma, L. (2016). Millimetre wave with rotational orbital angular momentum. Scientific Reports 6 (1): 1–8.

91 91 L. Zhu, X. Wei, J. Wang, et al. (2014). Experimental demonstration of basic functionalities for 0.1‐THz orbital angular momentum (OAM) communications, Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3K.

92 92 Byun, W.‐J., Lee, Y.‐S., Kim, B.S. et al. (2015). Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector. Electronics Letters 51 (19): 1480–1482.

93 93 Mari, E., Spinello, F., Oldoni, M. et al. (2014). Near‐field experimental verification of separation of OAM channels. IEEE Antennas and Wireless Propagation Letters 14: 556–558.

94 94 Byun, W.J., Kim, K.S., Kim, B.S. et al. (2016). Multiplexed Cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes. Scientific Reports 6: 27339.

95 95 Cheng, L., Hong, W., and Hao, Z.‐C. (2014). Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Scientific Reports 4 (1): 1–5.

96 96 Qin, F., Wan, L., Li, L. et al. (2018). A transmission metasurface for generating OAM beams. IEEE Antennas and Wireless Propagation Letters 17 (10): 1793–1796.

97 97 Hui, X., Zheng, S., Hu, Y. et al. (2015). Ultralow reflectivity spiral phase plate for generation of millimeter‐wave OAM beam. IEEE Antennas and Wireless Propagation Letters 14: 966–969.

98 98 Chen, Y., Zheng, S., Li, Y. et al. (2015). A flat‐lensed spiral phase plate based on phase‐shifting surface for generation of millimeter‐wave OAM beam. IEEE Antennas and Wireless Propagation Letters 15: 1156–1158.

99 99 A. Bennis, R. Niemiec, C. Brousseau, et al. (2013). Flat plate for OAM generation in the millimeter band, 2013 7th European Conference on Antennas and Propagation (EuCAP). IEEE, pp. 3203–3207.

100 100 Niemiec, R., Brousseau, C., Mahdjoubi, K. et al. (2014). Characterization of an OAM flat‐plate antenna in the millimeter frequency band. IEEE Antennas and Wireless Propagation Letters 13: 1011–1014.

101 101 Tamburini, F., Mari, E., Thidé, B. et al. (2011). Experimental verification of photon angular momentum and vorticity with radio techniques. Applied Physics Letters 99 (20): 204102.

102 102 Bai, Q., Tennant, A., and Allen, B. (2014). Experimental circular phased array for generating OAM radio beams. Electronics Letters 50 (20): 1414–1415.

103 103 Liu, K., Liu, H., Qin, Y. et al. (2016). Generation of OAM beams using phased array in the microwave band. IEEE Transactions on Antennas and Propagation 64 (9): 3850–3857.

104 104 Kang, L., Li, H., Zhou, J. et al. (2019). A mode‐reconfigurable orbital angular momentum antenna with simplified feeding scheme. IEEE Transactions on Antennas and Propagation 67 (7): 4866–4871.

105 105 Liu, Q., Chen, Z.N., Liu, Y. et al. (2018). Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna. IEEE Transactions on Antennas and Propagation 66 (4): 1796–1804.

106 106 Zhao, M., Gao, X., Xie, M. et al. (2018). Generation of coupled radio frequency orbital angular momentum beam with an optical‐controlled circular antenna array. Optics Communications 426: 126–129.

107 107 Gong, Y., Wang, R., Deng, Y. et al. (2017). Generation and transmission of OAM‐carrying vortex beams using circular antenna array. IEEE Transactions on Antennas and Propagation 65 (6): 2940–2949.

108 108 Yuan, T., Cheng, Y., Wang, H.‐Q., and Qin, Y. (2016). Generation of OAM radio beams with modified uniform circular array antenna. Electronics Letters 52 (11): 896–898.

109 109 Lin, M., Gao, Y., Liu, P., and Liu, J. (2017). Theoretical analyses and design of circular array to generate orbital angular momentum. IEEE Transactions on Antennas and Propagation 65 (7): 3510–3519.

110 110 F. E. Mahmouli and S. Walker. (2012). Orbital angular momentum generation in a 60GHz wireless radio channel, 2012 20th Telecommunications Forum (TELFOR), Belgrade, Serbia: IEEE, (20–22 November 2012).

111 111 Bazhenov, V.Y., Vasnetsov, M., and Soskin, M. (1990). Laser beams with screw dislocations in their wavefronts. JETP Letter 52 (8): 429–431.

112 112 Heckenberg, N., McDuff, R., Smith, C., and White, A. (1992). Generation of optical phase singularities by computer‐generated holograms. Optics Letters 17 (3): 221–223.

113 113 Arlt, J., Dholakia, K., Allen, L., and Padgett, M. (1998). The production of multiringed Laguerre–Gaussian modes by computer‐generated holograms. Journal of Modern Optics 45 (6): 1231–1237.

114 114 Meng, X.‐S., Wu, J.‐J., Wu, Z.‐S. et al. (2018). Design of multiple‐polarization reflectarray for orbital angular momentum wave in radio frequency. IEEE Antennas and Wireless Propagation Letters 17 (12): 2269–2273.

115 115 Yu, S., Li, L., Shi, G. et al. (2016). Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Applied Physics Letters 108 (24): 241901.

116 116 Chen, G.‐T., Jiao, Y.‐C., and Zhao, G. (2018). A reflectarray for generating wideband circularly polarized orbital angular momentum vortex wave. IEEE Antennas and Wireless Propagation Letters 18 (1): 182–186.

117 117 Huang, H.‐F. and Li, S.‐N. (2019). High‐efficiency planar reflectarray with small‐size for OAM generation at microwave range. IEEE Antennas and Wireless Propagation Letters 18 (3): 432–436.

118 118 Marrucci, L., Karimi, E., Slussarenko, S. et al. (2011). Spin‐to‐orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics 13 (6): 064001.

119 119 Pan, Y., Zheng, S., Zheng, J. et al. (2016). Generation of orbital angular momentum radio waves based on dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters 16: 385–388.

120 120 Zheng, S., Hui, X., Jin, X. et al. (2015). Transmission characteristics of a twisted radio wave based on circular traveling‐wave antenna. IEEE Transactions on Antennas and Propagation 63 (4): 1530–1536.

121 121 Wu, J., Zhang, Z., Ren, X. et al. (2019). A broadband electronically mode‐reconfigurable orbital angular momentum metasurface antenna. IEEE Antennas and Wireless Propagation Letters 18 (7): 1482–1486.

122 122 Balanis, C.A. (2012). Advanced Engineering Electromagnetics, 2e. John Wiley & Sons.

123 123 Duan, D.‐W. and Rahmat‐Samii, Y. (1992). A generalized three‐parameter (3‐P) aperture distribution for antenna applications. IEEE Transactions on Antennas and Propagation 40 (6): 697–713.

Electromagnetic Vortices

Подняться наверх