Читать книгу Intelligent Systems for Rehabilitation Engineering - Группа авторов - Страница 25
References
Оглавление1. Speich, J.E. and Rosen, J., Medical robotics, in: Encyclopedia of biomaterials and biomedical engineering, vol. 983, p. 993, 2004.
2. Loureiro, R.C., Harwin, W.S., Nagai, K., Johnson, M., Advances in upper limb stroke rehabilitation: a technology push. Med. Biol. Eng. Comput., 49, 10, 1103, 2011.
3. Yue, Z., Zhang, X., Wang, J., Hand rehabilitation robotics on post-stroke motor recovery. Behav. Neurol., 2017, 2017. 3908135.://doi.org/ 10.1155/2017/3908135
4. Tefertiller, C., Pharo, B., Evans, N., Winchester, P., Efficacy of rehabilitation robotics for walking training in neurological disorders: A review. J. Rehabil. Res. Dev., 48, 4, 387–416, 2011.
5. Nef, T., Guidali, M., Klamroth-Marganska, V., Riener, R., ARM in-exoskeleton robot for stroke rehabilitation, in: World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, September 7-12, 2009, Springer, Berlin, Heidelberg, pp. 127–130, 2009.
6. Cardona, M., Destarac, M., Cena, C.G., Robotics for Rehabilitation: A State of the Ar, in: Exoskeleton Robots for Rehabilitation and Healthcare Devices, pp. 1–11, Springer, Singapore, 2020.
7. Pignolo, L., Robotics in neuro-rehabilitation. J. Rehabil. Med., 41, 12, 955-960, 2009.
8. Krebs, H.I., Rehabilitation robotics: an academic engineer perspective, in: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, August, IEEE, pp. 6709–6712.
9. Yakub, F., Khudzari, A.Z.M., Mori, Y., Recent trends for practical rehabilitation robotics, current challenges and the future. Int. J. Rehabil. Res., 37, 1, 9–21, 2014.
10. Gelderblom, G.J., De Wilt, M., Cremers, G., Rensma, A., Rehabilitation robotics in robotics for healthcare; a roadmap study for the European Commission, in: 2009 IEEE International Conference on Rehabilitation Robotics, 2009, June, IEEE, pp. 834–838.
11. Rogers, E., Owens, D.H., Werner, H., Freeman, C.T., Lewin, P.L., Kichhoff, S., Lichtenberg, G., Norm optimal iterative learning control with application to problems in accelerator based free electron lasers and rehabilitation robotics. Eur. J. Control, 16, 5, 497–524, 2010.
12. Pons, J.L., Rehabilitation exoskeletal robotics. IEEE Eng. Med. Biol. Mag., 29, 3, 57–63, 2010.
13. Dai, J.S., Zhao, T., Nester, C., Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Auton. Robots, 16, 2, 207–218, 2004.
14. Loureiro, R.C. and Harwin, W.S., Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system, in: 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007, June, IEEE, pp. 757–763.
15. Novak, D. and Riener, R., Control strategies and artificial intelligence in rehabilitation robotics. Ai Mag., 36, 4, 23-33, 2015.
16. Krebs, H.I., et al., A paradigm shift for rehabilitation robotics. IEEE Eng. Med. Biol. Mag., 27, 4, 61–70, 2008.
17. Hillman, M.R., Pullin, G.M., Gammie, A.R., Stammers, C.W., Orpwood, R.D., Clinical experience in rehabilitation robotics. J. Biomed. Eng., 13, 3, 239–243, 1991.
18. Brunetti, F., Garay, A., Moreno, J.C., Pons, J.L., Enhancing functional electrical stimulation for emerging rehabilitation robotics in the framework of hyper project, in: 2011 IEEE International Conference on Rehabilitation Robotics, 2011, June, IEEE, pp. 1–6.
19. Dogmus, Z., Papantoniou, A., Kilinc, M., Yildirim, S.A., Erdem, E., Patoglu, V., Rehabilitation robotics ontology on the cloud, in: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 2013, June, IEEE, pp. 1–6.
20. Yap, H.K., Lim, J.H., Nasrallah, F., Low, F.Z., Goh, J.C., Yeow, R.C., MRC-glove: A fMRI compatible soft robotic glove for hand rehabilitation application, in: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015, August, IEEE, pp. 735–740.
21. Dogmus, Z., Erdem, E., Patoglu, V., RehabRobo-Query: Answering natural language queries about rehabilitation robotics ontology on the cloud. Semant. Web, 10, 3, 605–629, 2019.
22. Sebastian, G., Li, Z., Crocher, V., Kremers, D., Tan, Y., Oetomo, D., Interaction Force Estimation Using Extended State Observers: An Application to Impedance-Based Assistive and Rehabilitation Robotics. IEEE Robot. Autom. Lett., 4, 2, 1156–1161, 2019.
23. Krebs, H.I., Volpe, B., Hogan, N., A working model of stroke recovery from rehabilitation robotics practitioners. J. Neuroeng. Rehabil., 6, 1, 6, 2009.
24. Berezny, N., Dowlatshahi, D., Ahmadi, M., Novel Concept of a Lower-limb Rehabilitation Robot Targeting Bed-bound Acute Stroke Patients. CMBES Proceedings, vol. 42, 2019.
25. Penalver-Andres, J., Duarte, J., Vallery, H., Klamroth-Marganska, V., Riener, R., Marchal-Crespo, L., Rauter, G., Do we need complex rehabilitation robots for training complex tasks?, in: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 2019, June, IEEE, pp. 1085–1090.
26. Yu, K.P., Yeung, L.F., Ng, S.W., Tong, K.Y., Bionic robotics for post polio walking, in: Intelligent Biomechatronics in Neurorehabilitation, pp. 83–109, Cambridge, Massachusetts, Academic Press, 2020.
27. Tejima, N., Rehabilitation robotics: a review. Adv. Rob., 14, 7, 551–564, 2001.
28. Hillman, M., 2 rehabilitation robotics from past to present–a historical perspective, in: Advances in Rehabilitation Robotics, pp. 25–44, Springer, Berlin, Heidelberg, 2004.
29. Fong, J., Ocampo, R., Gross, D.P., Tavakoli, M., Intelligent Robotics Incorporating Machine Learning Algorithms for Improving Functional Capacity Evaluation and Occupational Rehabilitation. J. Occup. Rehabil., 30, 3, 362–370, 2020.
30. Mohammadi, A. and Dallali, H., Disturbance observer applications in rehabilitation robotics: an overview, in: Powered Prostheses, pp. 113–133, Cambridge, Massachusetts, Academic Press, 2020.
31. van Vliet, P. and Wing, A.M., A new challenge—robotics in the rehabilitation of the neurologically motor impaired. Phys. Ther., 71, 1, 39–47, 1991.
32. Knestel, M., Hofer, E.P., Barillas, S.K., Rupp, R., The artificial muscle as an innovative actuator in rehabilitation robotics. IFAC Proc. Volumes, 41, 2, 773–778, 2008.
33. Munih, M. and Bajd, T., Rehabilitation robotics. Technol. Healthcare, 19, 6, 483–495, 2011.
34. Krebs, H.I., and Volpe, B.T., Rehabilitation robotics, in: Handbook of clinical neurology, vol. 110, pp. 283–294, Amsterdam, Elsevier, 2013.
35. Rosier, J.C. et al., Rehabilitation robotics: The MANUS concept, in: Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments, 1991, June, IEEE, pp. 893–898.
36. Krebs, H.I., Palazzolo, J.J., Dipietro, L., Ferraro, M., Krol, J., Rannekleiv, K., Hogan, N., Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Auton. Robots, 15, 1, 7–20, 2003.
37. Riener, R., Frey, M., Bernhardt, M., Nef, T., Colombo, G., Human-centered rehabilitation robotics, in: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, 2005, June, IEEE, pp. 319–322.
38. Weinberg, B., Nikitczuk, J., Patel, S., Patritti, B., Mavroidis, C., Bonato, P., Canavan, P., Design, control and human testing of an active knee rehabilitation orthotic device, in: Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, April, IEEE, pp. 4126–4133.
39. Chisholm, K.J., Klumper, K., Mullins, A., Ahmadi, M., A task oriented haptic gait rehabilitation robot. Mechatronics, 24, 8, 1083–1091, 2014.
40. O’Neill, C. et al., Inflatable soft wearable robot for reducing therapist fatigue during upper extremity rehabilitation in severe stroke. IEEE Rob. Autom. Lett., 5, 3, 3899–3906, 2020.
41. Kwee, H.H., Rehabilitation robotics-softening the hardware. IEEE Eng. Med. Biol. Mag., 14, 3, 330–335, 1995.
42. Rocon, E., Belda-Lois, J.M., Ruiz, A.F., Manto, M., Moreno, J.C., Pons, J.L., Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans. Neural Syst. Rehabil. Eng., 15, 3, 367–378, 2007.
43. Rocon, E., Moreno, J.C., Ruiz, A.F., Brunetti, F., Miranda, J.A., Pons, J.L., Application of inertial sensors in rehabilitation robotics, in: 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007, June, IEEE, pp. 145–150.
44. Sartori, M., Reggiani, M., Mezzato, C., Pagello, E., A lower limb EMG-driven biomechanical model for applications in rehabilitation robotics, in: 2009 International Conference on Advanced Robotics, 2009, June, IEEE, pp. 1–7.
45. Guo, K., Zha, S., Liu, Y., Liu, B., Yang, H., Li, Z., Experimental Study On Wearable Ankle Rehabilitation Device, in: 2019 International Conference on Mathematics, Big Data Analysis and Simulation and Modelling (MBDASM 2019), 2019, October, Atlantis Press.
46. Harwin, W.S., Gosine, R.G., Kazi, Z., Lees, D.S., Dallaway, J.L., A comparison of rehabilitation robotics languages and software. Robotica, 15, 2, 133–151, 1997.
47. Galindo, C., Gonzalez, J., Fernández-Madrigal, J.A., An architecture for cognitive human-robot integration. Application to rehabilitation robotics, in: IEEE International Conference Mechatronics and Automation, 2005, 2005, July, vol. 1, IEEE, pp. 329–334.
48. Beckerle, P., Salvietti, G., Unal, R., Prattichizzo, D., Rossi, S., Castellini, C., Mastrogiovanni, F., A human–robot interaction perspective on assistive and rehabilitation robotics. Front. Neurorob., 11, 24, 2017.
49. Sabatini, A.M., Genovese, V., Maini, E.S., Toward low-cost vision-based 2D localisation systems for applications in rehabilitation robotics, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, October, vol. 2, IEEE, pp. 1355–1360.
50. Mokhtari, M., Abdulrazak, B., Feki, M.A., Rodriguez, R., Grandjean, B., Integration of rehabilitation robotics in the context of smart homes: Application to assistive robotics. Int. J. Human-friendly Welfare Robot. Syst. (HWRSERS), 4, 2, 29–32, 2003.
51. Buerger, S.P., Palazzolo, J.J., Krebs, H.I., Hogan, N., Rehabilitation robotics: adapting robot behavior to suit patient needs and abilities, in: Proceedings of the 2004 American Control Conference, 2004, June, vol. 4, IEEE, pp. 3239–3244.
52. Rittenhouse, D.M., Abdullah, H.A., Runciman, R.J., Basir, O., A neural network model for reconstructing EMG signals from eight shoulder muscles: Consequences for rehabilitation robotics and biofeedback. J. Biomech., 39, 10, 1924–1932, 2006.
53. Riener, R., Wellner, M., Nef, T., Von Zitzewitz, J., Duschau-Wicke, A., Colombo, G., Lunenburger, L., A view on VR-enhanced rehabilitation robotics, in: 2006 International Workshop on Virtual Rehabilitation, 2006, August, IEEE, pp. 149–154.
54. Appel, V.C., Belini, V.L., Jong, D.H., Magalhães, D.V., Caurin, G.A., Classifying emotions in rehabilitation robotics based on facial skin temperature, in: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, 2014, August, IEEE, pp. 276–280.
55. Wang, W.S., Mendonca, R., Kording, K., Avery, M., Johnson, M.J., Towards Data-Driven Autonomous Robot-Assisted Physical Rehabilitation Therapy, in: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 2019, June, IEEE, pp. 34–39.
56. Kovács, L.L. and Stépán, G., Dynamics of digital force control applied in rehabilitation robotics. Meccanica, 38, 2, 213–226, 2003.
57. Patton, J.L., Dawe, G., Scharver, C., Mussa-Ivaldi, F.A., Kenyon, R., Robotics and virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor function, in: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, September, vol. 2, IEEE, pp. 4840–4843.
58. Wolbrecht, E.T., Leavitt, J., Reinkensmeyer, D.J., Bobrow, J.E., Control of a pneumatic orthosis for upper extremity stroke rehabilitation, in: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, August, IEEE, pp. 2687–2693.
59. Banala, S.K., Agrawal, S.K., Scholz, J.P., Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients, in: 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007, June, IEEE, pp. 401–407.
60. Mihelj, M., Novak, D., Ziherl, J., Olenšek, A., Munih, M., Challenges in biocooperative rehabilitation robotics, in: 2011 IEEE International Conference on Rehabilitation Robotics, 2011, June, IEEE, pp. 1–6.
61. Zhang, J., Cheah, C.C., Collins, S.H., Stable human-robot interaction control for upper-limb rehabilitation robotics, in: 2013 IEEE International Conference on Robotics and Automation, 2013, May, IEEE, pp. 2201–2206.
62. Koçak, M., Ayar, O., Gezgın, E., Preliminary Study on the Admittance Control of a Hand Rehabilitation System, in: 2019 Medical Technologies Congress (TIPTEKNO), 2019, October, IEEE, pp. 1–4.
63. Feil-Seifer, D. and Mataric, M.J., Defining socially assistive robotics, in: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, 2005, June, IEEE, pp. 465–468.
64. Matarić, M.J., Eriksson, J., Feil-Seifer, D.J., Winstein, C.J., Socially assistive robotics for post-stroke rehabilitation. J. NeuroEng. Rehabil., 4, 1, 5, 2007.
65. Fasoli, S.E. and Adans-Dester, C.P., A Paradigm Shift: Rehabilitation Robotics, Cognitive Skills Training and Function after Stroke. Front. Neurol., 10, 1088, 2019.
66. Aguirre, A., Casas, J., Céspedes, N., Múnera, M., Rincon-Roncancio, M., Cuesta-Vargas, A., Cifuentes, C.A., Feasibility study: Towards Estimation of Fatigue Level in Robot-Assisted Exercise for Cardiac Rehabilitation, in: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 2019, June, IEEE, pp. 911–916.
67. Masiero, S., Carraro, E., Ferraro, C., Gallina, P., Rossi, A., Rosati, G., Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J. Rehabil. Med., 41, 12, 981–985, 2009.
68. Schweighofer, N., Choi, Y., Winstein, C., Gordon, J., Task-oriented rehabilitation robotics. Am. J. Phys. Med. Rehabil., 91, 11, S270–S279, 2012.
69. Cifuentes, C., Braidot, A., Rodríguez, L., Frisoli, M., Santiago, A., Frizera, A., Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics, in: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012, June, IEEE, pp. 1989–1994.
70. Nef, T. and Lum, P., Improving backdrivability in geared rehabilitation robots. Med. Biol. Eng. Comput., 47, 4, 441–447, 2009.
71. Ceseracciu, E., Reggiani, M., Sawacha, Z., Sartori, M., Spolaor, F., Cobelli, C., Pagello, E., SVM classification of locomotion modes using surface electromyography for applications in rehabilitation robotics, in: 19th International Symposium in Robot and Human Interactive Communication, 2010, September, IEEE, pp. 165–170.
72. Novak, D. and Riener, R., Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection, in: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 2013, June, IEEE, pp. 1–6.
73. Ai, Q., Ding, B., Liu, Q., Meng, W., A subject-specific EMG-driven musculoskeletal model for applications in lower-limb rehabilitation robotics. Int. J. Humanoid Rob., 13, 03, 1650005, 2016.
74. Wang, L., Peng, G., Yao, W., Biggar, S., Hu, C., Yin, X., Fan, Y., Soft robotics for hand rehabilitation, in: Intelligent Biomechatronics in Neurorehabilitation, pp. 167–176, Cambridge, Massachusetts, Academic Press, 2020.
75. Neveryd, H., Eftring, H., Bolmsjö, G., The swedish experience of rehabilitation robotics, in: Proc. of Rehabilitation Robotics Workshop, 1999.
76. Andrade, K.D.O., Fernandes, G., Caurin, G.A., Siqueira, A.A., Romero, R.A., Pereira, R.D.L., Dynamic player modelling in serious games applied to rehabilitation robotics, in: 2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol, 2014, October, IEEE, pp. 211–216.
77. Andrade, K.D.O., Pasqual, T.B., Caurin, G.A., Crocomo, M.K., Dynamic difficulty adjustment with Evolutionary Algorithm in games for rehabilitation robotics, in: 2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH), 2016, May, IEEE, pp. 1–8.
78. Dallaway, J.L., Jackson, R.D., Timmers, P.H., Rehabilitation robotics in Europe. IEEE Trans. Rehabil. Eng., 3, 1, 35–45, 1995.
79. Harwin, W.S., Rahman, T., Foulds, R.A., A review of design issues in rehabilitation robotics with reference to North American research. IEEE Trans. Rehabil. Eng., 3, 1, 3–13, 1995.
80. Van der Loos, H.M., VA/Stanford rehabilitation robotics research and development program: lessons learned in the application of robotics technology to the field of rehabilitation. IEEE Trans. Rehabil. Eng., 3, 1, 46–55, 1995.
1 * Corresponding author: souvik.ganguli@thapar.edu