Читать книгу Handbook of Biomass Valorization for Industrial Applications - Группа авторов - Страница 87

References

Оглавление

1. Zhao, G., Huang, X., Wang, X., Wang, X., Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: A critical review. J. Mater. Chem. A, 5, 21625–21649, 2017.

2. U.S. Energy Information Administration, EIA projects 48% increase in world energy consumption by 2040, U.S. Energy Information Administration Data available on US Govt. site. (accessed December 2020).

3. Hammond, C., Lopez-Sanchez, J.A., Rahim, M.H.A., Dimitratos, N., Jenkins, R.L., Carley, A.F., He, Q., Kiely, C.J., Knight, D.W., Hutchings, G.J., Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Trans., 40, 3927, 2011.

4. Mishra, V.K. and Goswami, R., A review of production, properties and advantages of biodiesel. Biofuels, 9, 273–289, 2018.

5. Suresh, M., Jawahar, C.P., Richard, A., A review on biodiesel production, combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renew. Sust. Energ. Rev., 92, 38–49, 2018.

6. Veluturla, S., Archna, N., Rao, D.S., Hezil, N., Indraja, I.S., Spoorthi, S., Catalytic valorization of raw glycerol derived from biodiesel: A review. Biofuels, 9, 305–314, 2018.

7. He, Q., McNutt, J., Yang, J., Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renew. Sust. Energy Rev., 71, 63–76, 2017.

8. Lin, Y.C., Catalytic valorization of glycerol to hydrogen and syngas. Int. J. Hydrogen Energy, 38, 2678–2700, 2013.

9. Zhou, C.-H., Beltramini, J.N., Fan, Y.-X., Lu, G.Q., Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev., 37, 527–549, 2008.

10. Global biodiesel production by country, 2019 https://www.statista.com/statistics/271472/bio-diesel-production-in-selected-countries (accessed December 2020).

11. Len, C. and Luque, R., Continuous flow transformations of glycerol to valuable products: An overview. Sust. Chem. Process., 2, 1–10, 2014.

12. Kaur, J., Sarma, A.K., Jha, M.K., Gera, P., Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Rep., 27, e00487, 2020.

13. Veluturla, S., Archna, N., Rao, D.S., Hezil, N., Indraja, I.S., Spoorthi, S., Catalytic valorization of raw glycerol derived from biodiesel: A review. Biofuels, 9, 305–314, 2018.

14. Checa, M., Delgado, S.N., Montes, V., Encinar, J.M., Recent advances in glycerol catalytic valorization: A review. Catalysts, 10, 1, 2020.

15. Kongjao, S., Damronglerd, S., Hunsom, M., Purification of crude glycerol derived from waste used-oil methyl ester plant. Korean J. Chem. Eng., 27, 944–949, 2010.

16. Ardi, M.S., Aroua, M.K., Hashim, N.A., Progress, prospect and challenges in glycerol purification process: A review. Renew. Sust. Energy Rev., 42, 1164–1173, 2015.

17. Isahak, W.N.R.W., Ismail, M., Yarmo, M.A., Jahim, J.M., Salimon, J., Purification of crude glycerol from transesterification RBD palm oil over homogeneous and heterogeneous catalysts for the biolubricant preparation. J. Appl. Sci., 10, 2590–2595, 2010.

18. Manosak, R., Limpattayanate, S., Hunsom, M., Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption. Fuel Process. Technol., 92, 92–99, 2011.

19. Johnson, D.T. and Taconi, K.A., The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog., 26, 338–348, 2007.

20. Kang, S., Ye, J., Chang, J., Recent advances in carbon-based sulfonated catalyst: Preparation and application. Int. Rev. Chem. Eng., 5, 133–144, 2013.

21. Bagheri, S., Julkapli, N.M., Yehye, W.A., Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable Sustain. Energy Rev., 41, 113–127, 2015.

22. Zhao, H., Zheng, L., Li, X., Chen, P., Hou, Z., Hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalyst: A short review. Catal. Today, 355, 84–95, 2020.

23. Ruy, A.D.S., Alves, R.M.D.B., Hewer, T.L.R., Pontes, D.A., Teixeira, L.S.G., Pontes, L.A.M., Catalysis for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal. Today, 2020, https://doi.org/10.1016/j.cattod.2020.06.035.

24. Maris, E.P. and Davis, R.J., Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J. Catal., 249, 328–337, 2007.

25. Suarez, E.G., Cadenas, M.P., Guerrero-Ruiz, A., Rodriguez-Ramos, I., Arcoya, A., Effect of the functional groups of carbon on the surface and catalytic properties of Ru/C catalysts for hydrogenolysis of glycerol. Appl. Surf. Sci., 287, 108–116, 2013.

26. Malaika, A. and Kozłowski, M., Glycerol conversion towards valuable fuel blending compounds with the assistance of SO3H-functionalized carbon xerogels and spheres. Fuel Process. Technol., 184, 19–26, 2019.

27. Sanchez, J.A., Hernandez, D.L., Moreno, J.A., Mondragon, F., Fernandez, J.J., Alternative carbon based acid catalyst for selective esterification of glycerol to acetylglycerols. Appl. Catal. A: Gen., 405, 55–60, 2011.

28. de la Calle, C., Fraile, J.M., Bordeje, E.G., Pires, E., Roldan, L., Biobased catalyst in biorefinery processes: sulphonated hydrothermal carbon for glycerol esterification. Catal. Sci. Technol., 5, 2897–2903, 2015.

29. Barroso, V.D., Herrera, C., Larrubia, M.A., González-Gil, R., Cortés-Reyes, M., Alemany, L.J., Continuous-flow process for glycerol conversion to solketal using a brönsted acid functionalized carbon-based catalyst. Catalysts, 9, 609, 2019.

30. Chandrakala, U., Prasad, R.B.N., Devi, B.L.A.P., Glycerol valorization as biofuel additives by employing a carbon based solid acid catalyst derived from glycerol. Ind. Eng. Chem. Res., 52, 16164–16169, 2014.

31. Zhou, L., Al-Zaini, E., Adesina, A.A., Catalytic characteristics and parameters optimization of the glycerol acetylation over solid acid catalysts. Fuel, 103, 617–625, 2013.

32. Sun, Y., Hu, J., An, S., Zhang, Q., Guo, Y., Song, D., Shang, Q., Selective esterification of glycerol with acetic acid or lauric acid over rod-like carbon-based sulfonic acid functionalized ionic liquids. Fuel, 207, 136–145, 2017.

33. Janaun, J. and Ellis, N., Glycerol etherification by tert-butanol catalyzed by sulfonated carbon catalyst. J. Appl. Sci., 10, 2633–2637, 2010.

34. Khayoon, M.S. and Hameed, B.H., Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresour. Technol., 102, 9229–9235, 2011.

35. Ferreira, P., Fonseca, I.M., Ramos, A.M., Vital, J., Castanheiro, J.E., Acetylation of glycerol over heteropolyacids supported on activated carbon. Catal. Commun., 12, 573–576, 2011.

36. Wang, L., Zhang, J., Yang, S., Sun, Q., Zhu, L., Wu, Q., Zhang, H., Menga, X., Xiao, F.S., Sulfonated hollow sphere carbon as an efficient catalyst for acetalisation of glycerol. J. Mater. Chem. A, 1, 9422–9426, 2013.

37. Carvalho, W.A., Galhardo, T.S., Simone, N., Goncalves, M., Figueiredo, F., Mandelli, D., Preparation of sulfonated carbons from rice husk and their application in catalytic conversion of glycerol. ACS Sustain. Chem. Eng., 1, 1381–1389, 2013.

38. Tao, M.L., Guan, H.Y., Wang, X.H., Liu, Y.C., Louh, R.F., Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification. Fuel Process. Technol., 138, 355–360, 2015.

39. Okoye, P.U., Abdullah, A.Z., Hameed, B.H., Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. Fuel, 209, 538–544, 2017.

40. Karnjanakom, S., Maneechakr, P., Samart, C., Guan, G., Ultrasound-assisted acetylation of glycerol for triacetin production over green catalyst: A liquid biofuel candidate. Energy Convers. Manage., 173, 262–270, 2018.

41. Palo, D.R., Dagle, R.A., Holladay, J.D., Methanol steam reforming for hydrogen production. Chem. Rev., 107, 3992–4021, 2007.

42. Haryanto, A., Fernando, S., Murali, N., Adhikari, S., Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels, 19, 2098–2106, 2005.

43. Rahman, M.M., Aqueous-phase reforming of glycerol over carbon-nanotube-supported catalysts. Catal. Lett., 150, 2674–2687, 2020.

44. Kunkes, E.L., Simonetti, D.A., Dumesic, J.A., Pyrz, W.D., Murillo, L.E., Chen, J.G., Buttrey, D.J., The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum–rhenium catalysts. J. Catal., 260, 164–177, 2008.

45. Soares, R.R., Simonetti, D.A., Dumesic, J.A., Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew. Chem. Int. Ed., 45, 3982–3985, 2006.

46. Fernandez, Y., Arenillas, A., Bermudez, J.M., Menendez, J.A., Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. J. Anal. Appl. Pyrolysis, 88, 155–159, 2010.

47. Rodrigues, E.G., Pereira, M.F.R., Delgado, J.J., Chen, X., Orfao, J.J.M., Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes. Catal. Commun., 16, 64–69, 2011.

48. Arcanjo, M.R.A., Silva Jr., I.J., Castellon, E.R., Molina, A.I., Vieira, R.S., Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today, 279, 317–326, 2017.

49. Zhang, C., Wang, T., Liu, X., Ding, Y., Cu-promoted Pt/activated carbon catalyst for glycerol oxidation to lactic acid. J. Mol. Catal. A—Chem., 424, 91–97, 2016.

50. Zhang, C., Wang, T., Liu, X., Ding, Y., Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution. Chin. J. Catal., 37, 502–509, 2016.

51. Zhao, W., Yang, B., Yi, C., Lei, Z., Xu, J., Etherification of glycerol with isobutylene to produce oxygenate additive using sulfonated peanut shell catalyst. Ind. Eng. Chem. Res., 49, 12399–12404, 2010.

52. Devi, B.L.A.P., Gangadhar, K.N., Kumar, K.L.N.S., Shanker, K.S., Prasada, R.B.N., Prasad, P.S.S., Synthesis of sulfonic acid functionalized carbon catalyst from glycerol pitch and its application for tetrahydropyranyl protection/deprotection of alcohols and phenols. J. Mol. Catal. A: Chem., 345, 96–100, 2011.

53. Goncalves, M., Soler, F.C., Isoda, N., Carvalho, W.A., Mandelli, D., Sepulvedac, J., Glycerol conversion into value-added products in presence of a green recyclable catalyst: Acid black carbon obtained from coffee ground wastes. J. Taiwan Inst. Chem. Eng., 60, 294–301, 2016.

54. Goncalves, M., Souza, V.C., Galhardo, T.S., Mantovani, M., Figueiredo, F.C.A., Mandelli, D., Carvalho, W.A., Glycerol conversion catalyzed by carbons prepared from agroindustrial waste. Ind. Eng. Chem. Res., 52, 2832–2839, 2013.

55. Katryniok, B., Paul, S., Dumeignil, E., Recent development in the field of catalytic dehydration of glycerol to acrolein. ACS Catal., 3, 1819–1834, 2013.

56. Lili, N., Yunjie, D., Weimiao, C., Leifeng, G., Ronghe, L., Yuan, L., Qin, X., Glycerol dehydration to acrolein over activated carbon supported silicotungstic acids. Chin. J. Catal., 29, 212–214, 2008.

57. Adam, F., Hassan, H.E., Hello, K.M., The synthesis of N-heterocyclic carbene–silica nano-particles and its catalytic activity in the cyclization of glycerol. J. Taiwan Inst. Chem. Eng., 43, 619–630, 2012.

1 *Corresponding author: lovjeet.chem@mnit.ac.in

Handbook of Biomass Valorization for Industrial Applications

Подняться наверх