Читать книгу Handbook of Biomass Valorization for Industrial Applications - Группа авторов - Страница 65

References

Оглавление

1. Alonso, D.M., Bond, J.Q., Dumesic, J., Catalytic conversion of biomass to biofuels. Green Chem., 12, 1493–1513, 2010 (October).

2. Parveen, F., Ahmad, K., Upadhyayula, S., Catalytic Conversion of Biomass Derived Cellulose to 5-Hydromethyl Furfural, in: Integrating Green Chemistry and Sustainable Engineering, pp. 113–163, John Wiley & Sons, Inc., USA, 2019.

3. Ahmad, K., Parveen, F., Upadhyayula, A., Upadhyayula, S., Heterogeneous Catalytic Conversion of Greenhouse Gas {CO}2 to Fuels, in: Integrating Green Chemistry and Sustainable Engineering, pp. 57–80, John Wiley & Sons, Inc., 2019.

4. Chheda, J.N., Huber, G.W., Dumesic, J.A., Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem.—Int. Ed., 46, 38, 7164–7183, 2007.

5. Zhou, C.-H., Xia, X., Lin, C.-X., Tong, D.-S., Beltramini, J., Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev., 40, 11, 5588, 2011.

6. Parveen, F., Patra, T., Upadhyayula, S., Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids—A comparative study. Carbohydr. Polym., 135, 2016, 280–284, 2015.

7. Parveen, F., Gupta, K., Upadhyayula, S., Synergistic effect of chloro and sulphonic acid groups on the hydrolysis of microcrystalline cellulose under benign conditions. Carbohydr. Polym., 159, 146–151, 2017.

8. Parveen, F., Jaiswal, M., Upadhyayula, S., Effect of linkers (aliphatic/aromatic) and anions on the activity of sulfonic acid functionalized ionic liquids towards catalyzing the hydrolysis of microcrystalline cellulose—An experimental and theoretical study. Renew. Energy, 121, 590–596, 2018.

9. Schutyser, W., Renders, T., Van Den Bosch, S., Koelewijn, S.F., Beckham, G.T., Sels, B.F., Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev., 47, 3, 852–908, 2018.

10. Babu, B.V., Biomass pyrolysis: A state-of-the-art review. Biofuel. Bioprod. Bior., 2, 393–414, 2008.

11. Holladay, J.E., Bozell, J.J., White, J.F., J.D., Top value added chemicals from biomass volume I— Results of screening for potential candidates from sugars and synthesis gas, Department of Energy, United States, 2004.

12. Parveen, F., Patra, T., Upadhyayula, S., A structure-activity relationship study using DFT analysis of Bronsted–Lewis acidic ionic liquids and synergistic effect of dual acidity in one-pot conversion of glucose to value-added chemicals. New J. Chem., 42, 2, 1423–1430, 2018.

13. Parveen, F. and Upadhyayula, S., Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities—A mechanistic and experimental study. Fuel Process. Technol., 162, 30–36, 2017.

14. Kumar, K., Khatri, V., Parveen, F., Kashyap, H.K., Upadhyayula, S., Synthesis of an oxygenated fuel additive from a waste biomass derived aldehyde using a green catalyst: An experimental and DFT study. Sustain. Energy Fuels, 4, 6, 2924–2936, 2020.

15. Ghosh, D., Dasgupta, D., Agrawal, D., Kaul, S., Adhikari, D.K., Kurmi, A.K., Arya, P.K., Bangwal, D., Negi, M.S., Fuels and chemicals from lignocellulosic biomass: An integrated biorefinery approach. Energy Fuels, 29, 5, 3149–3157, 2015.

16. Tong, X., Chen, H., Hu, J., Bi, Y., Sun, Z., Fan, W., The Efficient and Sustainable Pyrolysis and Gasification of Biomass by Catalytic Processes. ChemBioEng Rev., 2, 3, 157–174, 2015.

17. de Wild, P., Reith, H., Heeres, E., Biomass pyrolysis for chemicals, Biofuels, 2, 185-208, 2011.

18. Mohan, D., Pittman, C.U., Steele, P.H., Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels, 20, 3, 848–889, 2006.

19. Collard, F.X., Blin, J., Bensakhria, A., Valette, J., Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J. Anal. Appl. Pyrolysis, 95, 213–226, 2012.

20. Wildschut, J., Mahfud, F.H., Venderbosch, R.H., Heeres, H.J., Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts. Ind. Eng. Chem. Res., 48, 23, 10324–10334, 2009.

21. Stefanidis, S., Kalogiannis, K., Iliopoulou, E.F., Lappas, A.A., Triguero, J.M., Navarro, M.T., Chica, A., Rey, F., Mesopore-modified mordenites as catalysts for catalytic pyrolysis of biomass and cracking of vacuum gasoil processes. Green Chem., 15, 6, 1647, 2013.

22. Yu, Y., Zeng, Y., Zuo, J., Ma, F., Yang, X., Zhang, X., Wang, Y., Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment. Bioresour. Technol., 134, 198–203, 2013.

23. Cheng, Y.T., Jae, J., Shi, J., Fan, W., Huber, G.W., Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew. Chem.—Int. Ed., 51, 6, 1387–1390, 2012.

24. Lu, Q., Zhang, Z.B., Yang, X.C., Dong, C.Q., Zhu, X.F., Catalytic fast pyrolysis of biomass impregnated with K3PO 4 to produce phenolic compounds: Analytical Py-GC/MS study. J. Anal. Appl. Pyrolysis, 104, 139–145, 2013.

25. Hussain, Z., Khan, K.M., Khan, A., Ullah, S., Karim, A., Perveen, S., The conversion of biomass into liquid hydrocarbon fuel by two step pyrolysis using cement as catalyst. J. Anal. Appl. Pyrolysis, 101, 90–95, 2013.

26. Shadangi, K.P. and Mohanty, K., Production and characterization of pyrolytic oil by catalytic pyrolysis of Niger seed. Fuel, 126, 109–115, 2014.

27. Tang, Q., Chen, Y., Yang, H., Liu, M., Xiao, H., Wu, Z., Chen, H., Naqvi, S.R., Prediction of Bio-oil Yield and Hydrogen Contents Based on Machine Learning Method: Effect of Biomass Compositions and Pyrolysis Conditions. Energy Fuels, 34, 9, 11050–11060, 2020.

28. Bulushev, D.A. and Ross, J.R.H., Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catal. Today, 171, 1, 1–13, 2011.

29. Udomsirichakorn, J. and Salam, P.A., Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification. Renewable Sustain. Energy Rev., 30, 565–579, 2014.

30. Vamvuka, D., Karouki, E., Sfakiotakis, S., Gasification of waste biomass chars by carbon dioxide via thermogravimetry. Part I: Effect of mineral matter. Fuel, 90, 3, 1120–1127, 2011.

31. Vamvuka, D., Karouki, E., Sfakiotakis, S., Salatino, P., Gasification of waste biomass chars by carbon dioxide via thermogravimetry-effect of catalysts. Combust. Sci. Technol., 184, 1, 64–77, 2012.

32. Asadullah, M., Miyazawa, T., Ito, S.I., Kunimori, K., Yamada, M., Tomishige, K., Novel biomass gasification method with high efficiency: Catalytic gasification at low temperature. Green Chem., 4, 4, 385–389, 2002.

33. Asadullah, M., Miyazawa, T., Ito, S.I., Kunimori, K., Tomishige, K., Demonstration of real biomass gasification drastically promoted by effective catalyst. Appl. Catal. A Gen., 246, 1, 103–116, 2003.

34. Hanika, J., Lederer, J., Tukač, V., Veselý, V., Kováč, D., Hydrogen production via synthetic gas by biomass/oil partial oxidation. Chem. Eng. J., 176177, 286–290, 2011.

35. Mauriello, F., Vinci, A., Espro, C., Gumina, B., Musolino, M.G., Pietropaolo, R., Hydrogenolysis vs. aqueous phase reforming ({APR}) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Catal. Sci. Technol., 5, 9, 4466–4473, 2015.

36. Fasolini, A., Cespi, D., Tabanelli, T., Cucciniello, R., Cavani, F., Hydrogen from Renewables: A Case Study of Glycerol Reforming. Catalysts, 9, 9, 722, 2019.

37. Cortright, R.D., Davda, R.R., Dumesic, J.A., Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418, 6901, 964–967, 2002.

38. Valenzuela, M.B., Jones, C.W., Agrawal, P.K., Batch Aqueous-Phase Reforming of Woody Biomass. Energy Fuels, 20, 4, 1744–1752, 2006.

39. Wen, G., Xu, Y., Xu, Z., Tian, Z., Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. Catal. Commun., 11, 6, 522–526, 2010.

40. Wen, G., Xu, Y., Liu, Q., Wang, C., Liu, H., Tian, Z., Preparation of Ce-modified Raney Ni Catalysts and Their Application in Aqueous-Phase Reforming of Cellulose. Catal. Lett., 141, 12, 1851–1858, 2011.

41. Park, H.J., Kim, H.-D., Kim, T.-W., Jeong, K.-E., Chae, H.-J., Jeong, S.-Y., Chung, Y.-M., Park, Y.-K., Kim, C.-U., Production of Biohydrogen by Aqueous Phase Reforming of Polyols over Platinum Catalysts Supported on Three-Dimensionally Bimodal Mesoporous Carbon. ChemSusChem, 5, 4, 629–633, 2012.

42. Godina, L.I., Heeres, H., Garcia, S., Bennett, S., Poulston, S., Murzin, D.Y., Hydrogen production from sucrose via aqueous-phase reforming. Int. J. Hydrogen Energy, 44, 29, 14605–14623, 2019.

43. Gu, G.H., Wittreich, G.R., Vlachos, D.G., Microkinetic modeling of aqueous phase biomass conversion: Application to ethylene glycol reforming. Chem. Eng. Sci., 197, 415–418, 2019.

44. Oliveira, A.S., Baeza, J.A., Calvo, L., Alonso-Morales, N., Heras, F., Rodriguez, J.J., Gilarranz, M.A., Production of hydrogen from brewery wastewater by aqueous phase reforming with Pt/C catalysts. Appl. Catal. B Environ., 245, 367–375, 2019.

45. Zoppi, G., Pipitone, G., Galletti, C., Rizzo, A.M., Chiaramonti, D., Pirone, R., Bensaid, S., Aqueous phase reforming of lignin-rich hydrothermal liquefaction by-products: A study on catalyst deactivation. Catal. Today, 365, 206–213, 2021.

46. Jacobsson, S. and Johnson, A., The diffusion of renewable energy technology: An analytical framework and key issues for research. Energy Policy, 28, 9, 625–640, 2000.

47. McKendry, P., Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol., 83, 1, 37–46, 2002.

48. Kaltschmitt, M., Renewable Energy Renewable Energy from Biomass renewable energy from Biomass, Introduction, in: Renewable Energy Systems, pp. 1393–1396, Springer, New York, 2013.

49. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J., An overview of the organic and inorganic phase composition of biomass. Fuel, 94, 1–33, 2012.

50. Tumuluru, J.S., Sokhansanj, S., Wright, C.T., Boardman, R.D., Yancey, N.A., A review on biomass classification and composition, co-firing issues and pretreatment methods. Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. 2011, ASABE 2011, 3 (August 2011), pp. 2053–2083, 2011.

51. Dibenedetto, A., The potential of aquatic biomass for {CO}2-enhanced fixation and energy production. Greenh. Gases Sci. Technol., 1, 1, 58–71, 2011.

52. Tursi, A., A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J., 6, 2, 962–979, 2019.

53. Li, Y., Zhou, L.W., Wang, R.Z., Urban biomass and methods of estimating municipal biomass resources. Renewable Sustain. Energy Rev., 80, 1017–1030, 2017.

54. Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C., Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply, Oak Ridge National Laboratory, Tennessee, 2005.

55. Zheng, M., Skelton, R.L., Mackley, M.R., Biodiesel Reaction Screening Using Oscillatory Flow Meso Reactors. Process Saf. Environ. Prot., 85, 5, 365–371, 2007.

56. Demirbas, A., Political, economic and environmental impacts of biofuels: A review. Appl. Energy, 86, S108–S117, 2009.

57. Jeswani, H.K., Chilvers, A., Azapagic, A., Environmental sustainability of biofuels: A review. Proc. R. Soc. A Math. Phys. Eng. Sci., 476, 2243, 20200351, 2020.

58. Directive 2014/23/EU of the European Parliament and of the Council of 26 February 2014 on the award of concession contracts (Text with EEA relevance), in: Brussels Commentary on EU Public Procurement Law, Hart/Nomos, 2018.

59. Panichelli, L., Dauriat, A., Gnansounou, E., Life cycle assessment of soybean-based biodiesel in Argentina for export. Int. J. Life Cycle Assess., 14, 2, 144–159, 2008.

60. Hassan, M.N.A., Jaramillo, P., Griffin, W.M., Life cycle {GHG} emissions from Malaysian oil palm bioenergy development: The impact on transportation sector{\textquotesingle}s energy security. Energy Policy, 39, 5, 2615–2625, 2011.

61. Wang, M., Han, J., Dunn, J.B., Cai, H., Elgowainy, A., Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for {US} use. Environ. Res. Lett., 7, 4, 45905, 2012.

62. Policy Issues in Biodiversity Conservation 1: The Convention on Biological Diversity, 1999.

63. Scovronick, N. and Wilkinson, P., Health impacts of liquid biofuel production and use: A review. Glob. Environ. Change, 24, 155–164, 2014.

1 *Corresponding author: f.parveen@imperial.ac.uk; parveenfirdaus@gmail.com

Handbook of Biomass Valorization for Industrial Applications

Подняться наверх