Читать книгу Handbook of Biomass Valorization for Industrial Applications - Группа авторов - Страница 50
References
Оглавление1. O’Dea, R.M., Willie, J.A., Epps, T.H., 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Lett., 9, 4, 476, 2020.
2. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem. Rev., 118, 2, 614, 2018.
3. Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., Sels, B.F., Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. Chem. Soc. Rev., 47, 3, 852, 2018.
4. Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M., Valorization of Biomass: Deriving More Value from Waste. Science, 337, 6095, 695, 2012.
5. Rafiee, M., Alherech, M., Karlen, S.D., Stahl, S.S., Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. J. Am. Chem. Soc., 141, 38, 15266, 2019.
6. Holmberg, A.L., Reno, K.H., Wool, R.P., Epps, T.H., Biobased Building Blocks for the Rational Design of Renewable Block Polymers. Soft Matter, 10, 38, 7405, 2014.
7. Llevot, A., Grau, E., Carlotti, S., Grelier, S., Cramail, H., From Lignin-derived Aromatic Compounds to Novel Biobased Polymers. Macromol. Rapid Commun., 37, 1, 9, 2016.
8. Ren, T., Qi, W., Su, R., He, Z., Promising Techniques for Depolymerization of Lignin into Value-added Chemicals. ChemCatChem, 11, 2, 639, 2019.
9. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 344, 6185, 1, 2014.
10. Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C.A., Weckhuysen, B.M., Paving the Way for Lignin Valorisation: Recent Advancesin Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed., 55, 29, 8164, 2016.
11. He, Q., Ziegler-Devin, I., Chrusciel, L., Obame, S.N., Hong, L., Lu, X., Brosse, N., Lignin-First Integrated Steam Explosion Process for Green Wood Adhesive Application. ACS Sustain. Chem. Eng., 8, 13, 5380, 2020.
12. Parsell, T., Yohe, S., Degenstein, J., Jarrell, T., Klein, I., Gencer, E., Hewetson, B., Hurt, M., Kim, J.I., Choudhari, H., Saha, B., Meilan, R., Mosier, N., Ribeiro, F., Delgass, W.N., Chapple, C., Kenttämaa, H.I., Agrawal, R., Abu-Omar, M.M., A Synergistic Biorefinery Based on Catalytic Conversion of Lignin prior to Cellulose Starting from Lignocellulosic Biomass. Green Chem., 17, 3, 1492, 2015.
13. Dutta, S., Wu, K.C.W., Saha, B., Emerging Strategies for Breaking the 3D Amorphous Network of Lignin. Catal. Sci. Technol., 4, 11, 3785, 2014.
14. Vanholme, R., Morreel, K., Darrah, C., Oyarce, P., Grabber, J.H., Ralph, J., Boerjan, W., Metabolic Engineering of Novel Lignin in Biomass Crops. New Phytol., 196, 4, 978, 2012.
15. Gioia, C., Colonna, M., Tagami, A., Medina, L., Sevastyanova, O., Berglund, L.A., Lawoko, M., Lignin-Based Epoxy Resins: Unravelling the Relationship between Structure and Material Properties. Biomacromolecules, 21, 5, 1920, 2020.
16. Gandini, A., The Irruption of Polymers from Renewable Resources on the Scene of Macromolecular Science and Technology. Green Chem., 13, 5, 1061, 2011.
17. Nilsson, H., Galland, S., Larsson, P.T., Gamstedt, E.K., Nishino, T., Berglund, L.A., Iversen, T., A Non-Solvent Approach For High-Stiffness All-cellulose Biocomposites based on Pure Wood Cellulose. Compos. Sci. Technol., 70, 12, 1704, 2010.
18. Youssef, A.M. and El-Sayed, S.M., Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. Carbohydr. Polym., 193, 19, 2018.
19. Ralph, J., Hydroxycinnamates in lignification. Phytochem. Rev., 9, 65, 2010.
20. Davis, R., Tao, L., Tan, E., Biddy, M.J., Beckham, G.T., Scarlata, C., Jacobson, J., Cafferty, K., Ross, J., Lukas., J., In Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid Prehydrolysis and Enzymatic Hydrolysis Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons, Laboratory NRE (Ed.), NREL, Golden, CO, 2013.
21. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., Lignin valorization: improving lignin processing in the biorefinery. Science, 344, 6185, 2014.
22. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev., 110, 3552, 2010.
23. Martínez, A.T., Speranza, M., Ruiz-Duen, F.J., Ferreira, P., Camarero, S., Guillen, F., Martınez, M.J., Gutierrez, A., delRıo, J.C., Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol., 8, 195, 2010.
24. Wagner, A., Tobimatsu, Y., Phillips, L., Flint, H., Geddes, B., Lu, F., Ralph, J., Syringyl lignin production in conifers: proof of concept in a Pine tracheary element system. Proc. Natl. Acad. Sci., 112, 6218, 2015.
25. Sainsbury, P.D., Hardiman, E.M., Ahmad, M., Otani, H., Seghezzi, N., Eltis, L.D., Bugg, T.D.H., Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol., 18;8, 10, 2151, 2013.
26. Thompson, B., Machas, M., Nielsen, D.R., Creating pathways towards aromatic building blocks and fine chemical. Curr. Opin. Biotechnol., 36, 1, 2015.
27. Chundawat, S.P.S., Beckham, G.T., Himmel, M.E., Dale, B.E., Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng., 2, 121, 2011.
28. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., Methods for pre-treatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48, 3713, 2009.
29. Menon, V. and Rao, M., Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci., 38, 522, 2012.
30. Baucher, M., Halpin, C., Petit-Conil, M., Boerjan, W., Lignin: Genetic engineering and impact on pulping. Crit. Rev. Biochem. Mol. Biol., 38, 305, 2003.
31. Richardson, B., From a fossil-fuel to a biobased economy: The politics of industrial biotechnology. Environ. Plann. C: Gov. Policy, 30, 2, 282, 2012.
32. Yao Lu, Yong-Chao Lu, Hong-Qin Hu, Feng-Jin Xie, Xian-Yong Wei, Xing Fan, Structural Characterization of Lignin and Its Degradation Products with Spectroscopic Methods. J. Spectros., 2017, 15, 2017.
33. Gosselink, R.J.A., Lignin as a renewable aromatic resource for the chemical industry, Wageningen University, Wageningen, NL, 191, 2011.
34. Rettenmaier, N., Harter, R., Himmler, H., Keller, H., Kretschmer, W., Müller-Lindenlauf, M., Reinhardt, G., Scheurlen, K., Schröter, C., Integrated sustainability assessment of the BIOCORE biorefinery concept, Report prepared for the BIOCORE project www.biocore-europe.org, Heidelberg, 201.
35. Zhou, C.H., Xia, X., Lin, C.X., Tong, D.S., Beltramini, J., Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev., 40, 5588, 2011.
36. Barakat, A., de Vries, H., Rouau, X., Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review. Bioresour. Technol., 134, 362, 2013.
37. Saha, B. C., Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois, USA. Hou, C. T., (Ed.), Handbook of Industrial Biocatalysis, 1, 2005.
38. Alonso, D.M., Wettstein, S.G., Dumesic, J.A., Catalytic biomass conversion and upgrading into platform chemicals and liquid fuels. Green Chem., 15, 584, 2013.
39. Stocker, M., Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed., 47, 9200, 2008.
40. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., and Weckhuysen, B.M., The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev., 110, 6, 3552, 2010.
41. Aagauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T., The path forward for biofuels and biomaterials. Science, 5760, 484, 2006.
42. Souza, R.E., Gomes, F.J.B., Brito, E.O., et al. A review on lignin sources and uses. J. Appl. Biotechnol. Bioeng., 7, 3, 100, 2020.
43. Araújo, J.D., Grande, C.A., Rodrigues, A.E., Vanillin production from lignin oxidation in a batch reactor. Chem. Eng. Res. Des., 88, 1024, 2010.
44. Cotana, F., Cavalaglio, G., Nicolini, A., Gelosia, M., Coccia, V., Petrozzi, A., Brinchi, L., Lignin as co-product of second generation bioethanol production from lignocellulosic biomass. Energy Proc., 45, 52, 2014.
45. Lange, H., Decina, S., Crestini, C., Oxidative upgrade of lignin—Recent routes reviewed. Eur. Polym. J., 49, 1151, 2013.
46. Mandlekar, N., Cayla, A., Rault, F., Giraud, S., Salaün, F., Malucelli, G., Guan, J.-P., An Overview on the Use of Lignin and Its Derivatives in Fire Retardant Polymer Systems, Lignin - Trends and Applications, Matheus Poletto, IntechOpen, 2018.
47. Montazeri, M. and Eckelman, M.J., Life cycle assessment of catechols from lignin depolymerization. ACS Sustain. Chem. Eng., 4, 708, 2016.
48. Rodríguez, A., Sánchez, R., Requejo, A., Ferrer, A., Feasibility of rice straw as a raw material for the production of soda cellulose pulp. J. Cleaner Prod., 18, 1084, 2010.
49. Fengel, D. and Wegener, G., Wood Chemistry, Ultrastructure, Reactions, p. 56, Walter de Gruyter, Berlin, 1984.
50. dos Santos Abreu, H., Maria, M.A., Reis, J.L., Dual oxidation ways toward lignin evolution. Floresta Ambiente, 8, 207, 2001.
51. Gandini A., Polymers from renewable resources, in Comprehensive Polymer Science, First Supplement , Eds.: Aggarwal S.L. and Russo S., Pergamon Press, Oxford, 528, 1992.
52. Kumar, R. and Wyman, C.E., Effects of cellulase and xylanase enzymes on the deconstruction of solids from pre-treatment of poplar by leading technologies. Biotechnol. Progr., 25, 2, 302, 2009.
53. Sanchez, C., Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv., 27, 2, 185, 2009.
54. Shi, J., Chinn, M.S., SharmaShivappa, R.R., Microbial pre-treatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour. Technol., 99, 14, 6556, 2008.
55. Sanchez, O.J. and Cardona, C.A., Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol., 99, 13, 5270, 2008.
56. Cheng, Y.S., Zheng, Y., Yu, C.W., Dooley, T.M., Jenkins, B.M., VanderGheynst, J.S., Evaluation of high solids alkaline pre-treatment of rice straw. Appl. Biochem. Biotechnol., 162, 6, 1768, 2010.
57. Ibrahim, M.M., El Zawawy, W.K., Abdel Fattah, Y.R., Soliman, N.A., Agblevor, F.A., Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydr. Polym., 83, 2, 720, 2011.
58. McIntosh, S. and Vancov, T., Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pre-treatment. Bioresour. Technol., 101, 17, 6718, 2010.
59. Sun, Y.E. and Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol., 83, 1, 1, 2002.
60. Liang, Y., Siddaramu, T., Yesuf, J., Sarkany, N., Fermentable sugar release from Jatropha seed cakes followinglime pre-treatment and enzymatic hydrolysis. Bioresour. Technol., 101, 16, 6417, 2010.
61. Park, J.Y., Shiroma, R., Al-Haq, M.I., A novel lime pre-treatment for subsequent bioethanol production from rice straw calcium capturing by carbonation (CaCCO) process. Bioresour. Technol., 101, 17, 6805, 2010.
62. Hendriks, A.T.W.M. and Zeeman, G., Pre-treatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol., 100, 1, 10, 2009.
63. Hu, Z., Wang, Y., Wen, Z., Alkali (NaOH) pre-treatment of switchgrass by radio frequency-based dielectric heating. Appl. Biochem. Biotechnol., 148, 1, 71, 2008.
64. Sun, R., Lawther, J.M., Banks, W.B., Influence of alkaline pre-treatments on the cell wall components of wheat straw. Ind. Crops. Prod., 4, 2, 127, 1995.
65. Martın, C., Klinke, H.B., Thomsen, A.B., Wet oxidation as a pre-treatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb. Technol., 40, 3, 426, 2007.
66. Banerjee, S., Sen, R., Pandey, R.A., Evaluation of wet air oxidation as a pre-treatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy, 33, 12, 1680, 2009.
67. Martın, C., Marcet, M., Thomsen, A.B., Comparison between wet oxidation and steam explosion as pre-treatment methods for enzymatic hydrolysis of sugarcane bagasse. Bioresources, 3, 3, 670, 2008.
68. Li, C., Knierim, B., Manisseri, C., Comparison of dilute acid and ionic liquid pre-treatment of switchgrass:biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol., 101, 13, 4900, 2010.
69. Carrasco, J.E., Saiz, M.A.C., Navarro, A., Soriano, P., Saez, F., Martinez, J.M., Effects of dilute acid and steam explosion pre-treatments on the cellulose structure and kinetics of cellulosic fraction hydrolysis by dilute acids in lignocellulosic materials. Appl. Biochem. Biotechnol., 45–46, 1, 23, 1994.
70. Converti, A., Del Borghi, A., Arni, S., Molinari, F., Linearized kinetic models for the simulation of the mesophilic anaerobic digestion of pre-hydrolyzed woody wastes. Chem. Eng. Technol., 22, 5, 429, 1999.
71. Saxena, R.C., Adhikari, D.K., Goyal, H.B., Biomass-based energy fuel through biochemical routes: A review. Renew. Sustain. Energy Rev., 13, 167, 2009.
72. Pandey, A., Soccol Carlos, R., Nigam, P., Soccol Vanete, T., Biotechnological potential of agro-industrial residues I: Sugarcane bagasse. Bioresour. Technol., 74, 69, 2000.
73. Cho, N.-S., Shin, W., Jeong, S.-W., Leonowicz, A., Degradation of lignosulfonate by fungal laccase with low molecular mediators degradation of lignosulfonates. Bull. Korean Chem. Soc., 25, 10, 1551, 2004.
74. Motaung, T.E. and Anandjiwala, R.D., Effect of alkali and acid treatment on thermal degradation kinetics of sugarcane bagasse. Ind. Crops Prod., 74, 472–477, 2015.
75. Rocha, G.J.M., Martin, C., Soares, I.B., Maior, A.M.S., Baudel, H.M., Abreu, C.A.M., Dilute mixed-acid pre-treatment of sugarcane bagasse for ethanol production. Biomass Bioenergy, 35, 663, 2011.
76. Song, Y., Mobley, J.K., Motagamwala, A.H., Isaacs, M., James, A., Dumesic, J.R., Lee, A.F., Wilson, K., Crocker, M., Gold-catalyzed conversion of lignin to low molecular weight aromatics. Chem. Sci., 9, 8127, 2018.
77. Vander Poll, E.C., Bakker, R.R., Baets, P., Eggink, G., By-products resulting from lignocellulose pre-treatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl. Microbiol. Biotechnol., 98, 23, 9579, 2014.
78. A.W. Ludwig and C.H. Stout, Plywood process and product wherein the adhesive comprises a lignosulfonate–phenol–formaldehyde reaction products. U.S. Patent 3,658,638, 1972.
79. Peng, W. and Riedl, B., The chemorheology of phenol–formaldehyde thermoset resin and mixtures of the resin with lignin fillers. Polymer, 35, 1280, 1994.
80. Popp, J.L., Kirk, T.K., Dordick, J.S., Enzymic modification of lignin for use as a phenolic resin. Enzyme Microb. Technol., 13, 964, 1991.
81. Cetin, N.S. and Ozman, N., Use of organosolv lignin in phenol-formaldehyde resins for particleboard production I. Organosolv lignin modified resins. Int. J. Adhes. Adhes., 22, 477, 2002.
82. A. AfzaliArdakan, J.D. Gelorme, L.C. Kosbar, Methods of fabricating cross-linked biobased materials and structures fabricated therewith. U.S. Patent 6,339,116, 2002.
83. Anon, The world market for residual lyes from the manufacture of wood pulp and lignin sulfonates excluding tall oil: A 2005 global trade perspective, Icon Group International Inc., San Diego, USA, 2004.
84. Felby, C., Thygesen, L.G., Sanadi, S., Barsberg, S., Native lignin for bonding of fibre boards evaluation of bonding mechanisms in boards made from laccase-treated fibres of beech (Fagus sylvatica). Ind. Crops Prod., 20, 181, 2004.
85. Cazacu, G., Mihaies, M., Pascu, C., Profire, L., Kowarskik, A.L., Vasile, C., Polyolefin/lignosulfonate blends. Macromol. Mater. Eng., 289, 880, 2004.
86. Gosselink, R.J.A., Snijder, M.H.B., Kranenbarg, A., Keijsers, E.R.P., de Jong, E., Stigsson, L.L., Characterisation and application of NovaFiber lignin. Ind. Crops Prod., 20, 191, 2004.
87. Rusu, M. and Tudorachi, N., Biodegradable composite materials based on polyethylene and natural polymers I. Mechanical and thermal properties. J. Polym. Eng., 19, 355, 1999.
88. Baumberger, S., Starch–lignin films, in: Chemical Modification, Properties and Usage of Lignin, T.Q. Hu, (Ed.), pp. 1–20, Kluwer Academic/Plenum Publishers, London, 1999.
89. Ganewatta, M.S., Lokupitiya, H.N., Tang, C., Lignin Biopolymers in the Age of Controlled Polymerization. Polymers, 11, 1176, 2019, https://doi.org/10.3390/polym11071176
1 *Corresponding author: senthilkumar.chem@kongu.ac.in