Читать книгу Congo Basin Hydrology, Climate, and Biogeochemistry - Группа авторов - Страница 51
REFERENCES
Оглавление1 Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., et al. (2003). The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167. https://doi.org/10.1175/1525‐7541(2003)004<1147:TVGPCP>2.0.CO;2
2 Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., et al. (2015). PERSIANN‐CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96, 69–83. https://doi.org/10.1175/BAMS‐D‐13‐00068.1
3 Balagizi, C. M., Kasereka, M. M., Cuoco, E., & Liotta, M. (2018). Influence of moisture source dynamics and weather patterns on stable isotopes ratios of precipitation in Central‐Eastern Africa. Science of the Total Environment, 628–629, 1058–1078. https://doi.org/10.1016/j.scitotenv.2018.01.284
4 Balas, N., Nicholson, S. E., & Klotter, D. (2007). The relationship of rainfall variability in west central Africa to sea‐surface temperature fluctuations. International Journal of Climatology, 27, 1335–1349. https://doi.org/10.1002/joc.1456
5 Berhane, F., Zaitchik, B., & Badr, H. S. (2015). The Madden‐Julian Oscillation’s influence on spring rainy season precipitation over equatorial West Africa. Journal of Climate, 28, 8653–8672. https://doi.org/10.1175/JCLI‐D‐14‐00510.1
6 Bultot, F. (1971). Atlas climatique du bassin Congolais. Les composantes du biland’eau, Vol. 2. Brussels: Institut National pour l’Étude Agronomique du Congo, p. 25.
7 Camberlin, P., Janicot, S., & Poccard, I. (2001). Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical ocean surface temperature: Atlantic vs. ENSO. International Journal of Climatology, 21, 973–1005. doi:10.1002/joc.673
8 Camberlin, P., & Philippon, N. (2002). The East African March–May rainy season: Associated atmospheric dynamics and predictability over the 1968–97 period. Journal of Climate, 15, 1002–1019. https://doi.org/10.1175/1520‐0442(2002)015<1002:TEAMMR>2.0.CO;2
9 Camberlin, P., Barraud, G., Bigot, S., Dewitte, O., Makanzu Imwangana, F., Maki Mateso, J.‐C., et al. (2019). Evaluation of remotely sensed rainfall products over Central Africa. Quarterly Journal of the Royal Meteorological Society, 145, 2115–2138. https://doi.org/10.1002/qj.3547
10 Cook, K. H., & Vizy, E. K. (2016). The Congo Basin Walker circulation: dynamics and connections to precipitation. Climate Dynamics, 47, 697–717.
11 Creese, A., Washington, R., & Munday, C. (2019). The plausibility of September‐November Congo Basin rainfall change in coupled climate models. Journal of Geophysical Research: Atmospheres, 124, 5822–5846. https://doi.org/10.1029/2018JD029847
12 Crowhurst, D. M., Dadson, S. J., & Washington, R. (2020). Evaluation of evaporation climatology for the Congo Basin wet seasons in 11 global climate models, Journal of Geophysical Research: Atmospheres, 125, e2019JD030619. https://doi.org/ 10.1029/2019JD030619
13 Dezfuli, A. K., Zaitchik, B. F., & Gnadadesikan, A. (2015). Regional atmospheric circulation and rainfall variability in south equatorial Africa. Journal of Climate, 28, 809–818. https://doi.org/10.1175/JCLI‐D‐14‐00333.1
14 Dezfuli, A. K., & Nicholson, S. E. (2013). The relationship of interannual variability in western equatorial Africa to the tropical oceans and atmospheric circulation. Part II. The boreal autumn, Journal of Climate, 26, 66–84. https://doi.org/10.1175/JCLI‐D‐11‐00686.1
15 Diem, J. E., Sung, H. S., Konecky, B. L., Palace, M. W., Salerno, J., & Hartter, J. (2019). Rainfall characteristics and trends – and the role of Congo westerlies – in the western Uganda transition zone of equatorial Africa from 1983–2017. Journal of Geophysical Research: Atmospheres, 124, 10712–10729. https://doi.org/10.1029/2019JD031243
16 Dyer, E. L E., Jones, D. B. A., Nusbaumer, J., Li, H., Collin, O., Vettoretti, G., & Noone, D. (2017). Congo Basin precipitation: assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research: Atmospheres, 122, 6882–6898. https://doi.org/10.1002/2016JD026240
17 Funk, C., Peterson, P., Landsfeld, M, Pedreros, D., Verdin, J., Shukla, S., et al. (2015). The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes. Scientific Data, 2, 150066. doi: 10/1038/sdata.2015.66
18 Hamada, A., Takayabu, Y. N., Liu, C. T., & Zipser, E. J. (2015). Weak linkage between the heaviest rainfall and tallest storms. Nature Communications, 6. doi: 10.1038/ncomms7213
19 Hartman, A.T. (2016). Tracking and Analysis of Mesoscale Convective Systems over Central Equatorial Africa. Master’s Thesis, Florida State University.
20 Hartman, A.T. (2021). Tracking and analysis of mesoscale convective systems in central equatorial Africa. International Journal of Climatology, 41, 469–482. https://doi.org/10.1002/joc.6632
21 Hastenrath, S. (2007). Circulation mechanisms of climate anomalies in East Africa and the equatorial Indian Ocean. Dynamics of Atmospheres and Oceans, 43, 25–35. https://doi.org/10.1016/j.dynatmoce.2006.06.002
22 Hastenrath, S., Polzin, D., & Mutai, C. (2011). Circulation mechanisms of Kenya rainfall anomalies. Journal of Climate, 24, 404–412. doi: 10.1175/ 2010JCLI3599.1
23 Hua, W., Zhou, L., Chen, H., Nicholson, S. E., Raghavendra, A., & Jiang, Y. (2016). Possible causes of the Central Equatorial African long‐term drought. Environmental Research Letters, 11, 124002. doi: 10.1088/1748‐9326/11/12/124002
24 Hua, W., Zhou, L., Chen, H., Nicholson, S. E., Jiang, Y., & Raghavendra, A. (2018). Understanding the Central Equatorial African long‐term drought using AMIP‐type simulations. Climate Dynamics, 50, 1115–1128. https://doi.org/10.1007/s00382‐017‐3665‐2
25 Huffman, G. J., & Bolvin, D. T. (2014). TRMM and other data precipitation data set documentation. TRMM Document, 42 pp. (Available online at ftp://meso‐a.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.)
26 Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., et al. (2007). The TRMM Multi‐satellite precipitation analysis: Quasi‐global, multi‐year, combined‐sensor precipitation estimates at finer scale. Journal of Hydrometeorology, 8, 38–55. https://doi.org/10.1175/JHM560.1
27 Jackson, B., Nicholson, S. E., & Klotter, D. (2009). Mesoscale convective systems over western equatorial Africa and their relationship to large‐scale circulation. Monthly Weather Review, 137, 1272–1294. https://doi.org/10.1175/2008MWR2525.1
28 Janicot, S., Moron, V., & Fontaine, B. (1996). Sahel droughts and ENSO dynamics. Geophysical Research Letters, 23, 515–518. https://doi.org/10.1029/96GL00246
29 Kuete, G., Pokam, W. M., & Washington, R. (2020). African Easterly Jet South: control, maintenance mechanisms and link with Southern subtropical wave. Climate Dynamics, 54, 1539–1552. https://doi.org/10.1007/s00382‐019‐05072‐w
30 Liebmann, B., Blade, I., Funk, C., Allured, D., Quan, X.‐W., Hoerling, M., et al. (2017). Climatology and interannual variability of boreal spring wet season precipitation in the Eastern Horn of Africa and Implications for Its recent decline. Journal of Climate, 10, 3867–3886. https://doi.org/10.1175/JCLI‐D‐16‐0452.1
31 Longandjo, G.‐N.T. (2018). The Hydroclimate Variability of Central Africa: seasonal cycle, mechanisms, teleconnections and impacts on neighbouring regions. Ph.D. Thesis, University of Cape Town, South Africa, 165 pp.
32 Longandjo, G.‐N. T., & Rouaualt, M. (2020). On the structure of the regional‐scale circulation over Central Africa: seasonal evolution, variability, and mechanisms, Journal of Climate, 33, 145–162. https://doi.org/10.1175/JCLI‐D‐19‐0176.1
33 Losada, T., Rodríguez‐Fonseca, B., & Kucharski, F. (2012). Tropical SST and Sahel rainfall: A non‐stationary relationship. Geophysical Research Letters, 39, L12705. https://doi.org/10.1029/2012GL052423
34 Love, T. B., Kumar, V., Xie, P. P., & Thiaw, W. (2004). A 20‐year daily Africa precipitation climatology using satellite and gauge data. Preprints, 14th Conference on Applied Climatology, Seattle, WA, American Meteorological Society, pp. 5.4.
35 Maidment, R. I., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex, H., et al. (2017). A new, long‐term daily satellite‐based rainfall dataset for operational monitoring in Africa. Scientific Data, 4, No. 170063. https://doi.org/10.1038/sdata.2017.63
36 Malhi, Y., & Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society B, 359, 311–329. https://doi.org/10.1098/rstb.2003.1433
37 McCollum, J. R., Gruber, A., & Ba, M. B. (2000). Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. Journal of Applied Meteorology and Climatology, 39, 666–679. https://doi.org/10.1175/1520‐0450‐39.5.666
38 Nesbitt, S. W., & Zipser, E. J. (2003). The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. Journal of Climate, 16, 1456–1475. https://doi.org/10.1175/1520‐0442(2003)016<1456:TDCORA>2.0.CO;2
39 Neupane, N. (2016). The Congo basin zonal overturning circulation. Advances in Atmospheric Sciences, 33, 767–782. https://doi.org/10.1007/s00376‐015‐5190‐8
40 Nicholson, S. E. (1986). The spatial coherence of African rainfall anomalies: interhemispheric teleconnections. Journal of Climate and Applied Meteorology, 25, 1365–1381.
41 Nicholson, S. E. (2011). Dryland Climatology. Cambridge University Press, Cambridge, 516 pp.
42 Nicholson, S. E. (2017). Climate and climatic variability of rainfall over eastern Africa. Reviews of Geophysics, 55, 590–635. https://doi.org/10.1002/2016RG000544
43 Nicholson, S. E. (2018). The ITCZ and the seasonal cycle over equatorial Africa. Bulletin of the American Meteorological Society, 99, 337–348. https://doi.org/10.1175/BAMS‐D‐16‐0287.1
44 Nicholson, S. E., & Grist, J. P. (2003). The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. Journal of Climate, 16, 1013–1030. https://doi.org/10.1175/1520‐0442(2003)016<1013:TSEOTA>2.0.CO;2
45 Nicholson, S. E., Klotter, D., & Dezfuli, A. K. (2012). Spatial reconstruction of semi‐quantitative precipitation fields over Africa during the nineteenth century from documentary evidence and gauge data. Quaternary Research, 78, 13–23. doi: 10.1016/j.yqres.2012.03.012
46 Nicholson, S. E., Klotter, D., Dezfuli, A. K., & Zhou, L. (2018a). New rainfall datasets for the Congo Basin and surrounding regions. Journal of Hydrometeorology, 19, 1379–1396. https://doi.org/10.1175/JHM‐D‐18‐0015.1
47 Nicholson, S. E., Funk, C., & Fink, A. H. (2018b). Rainfall over the African continent from the 19th through the 21st century. Global and Planetary Change, 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014
48 Nicholson, S. E., Fink, A. H., & Funk, C. (2018c). Assessing recovery and regime change in West African rainfall from a 161‐year record. International Journal of Climatology, 38, 3770–3786. https://doi.org/10.1002/joc.5530
49 Nicholson, S. E., Klotter, D., Zhou, L., & Hua, W. (2019). Validation of satellite precipitation estimates over the Congo Basin. Journal of Hydrometeorology, 20, 631–656. https://doi.org/10.1175/JHM‐D‐18‐0118.1
50 Novella, N. S., & Thiaw, W. M. (2013). African Rainfall Climatology Version 2 for famine early warning systems. Journal of Applied Meteorology and Climatology, 52, 588–606. https://doi.org/10.1175/JAMC‐D‐11‐0238.1
51 Pohl, B., & Camberlin, P. (2006). Influence of the Madden‐Julian Oscillation on East Africa rainfall. II: March‐May season extremes and interannual variability. Quarterly Journal of the Royal Meteorological Society, 132, 25401–2559. https://doi.org/10.1256/qj.05.223
52 Pokam, W. M, Bain, C. L., Chadwick, R. S., Graham, R., Sonwa, D. J., & Kamga, F. M. (2014). Identification of processes driving low‐level westerlies in west equatorial Africa. Journal of Climate, 27, 4245–4262. https://doi.org/10.1175/JCLI‐D‐13‐00490.1
53 Raghavendra, A., Zhou, L. M., Jiang, Y., & Hua, W. J. (2018). Increasing extent and intensity of thunderstorms observed over the Congo Basin from 1982 to 2016. Atmospheric Research, 213, 17–26. https://doi.org/10.1016/j.atmosres.2018.05.028
54 Raghavendra, A., Zhou, L., Roundy, P. E., Jiang, Y., Milrad, S. H., Hua, W., & Xia, G. (2020). The MJO’s impact on rainfall trends over the Congo rain forest. Climate Dynamics, 54, 2683–2695. doi: 10.1007/s00382‐020‐05133‐5
55 Schneider, U., Becker, A., Finger, P., Meyer‐Christoffer, A., Rudolf, B., & Ziese, M. (2015). GPCC Full Data Monthly Product Version 7 at 2.5°: Monthly Land‐Surface gauges built on GTS‐based and Historic Data. doi: 10.5676/DWD_GPCC/FD_M_V7_250
56 Sinclaire, Z., Lenouo, A., Tchawoua, C., & Janicot, S. (2015). Synoptic Kelvin type perturbation waves over Congo basin over the period 1979‐2010. Journal of Atmospheric and Solar‐Terrestrial Physics, 130, 43–56. doi: 10.1016/j.jastp.2015.04.015
57 Sori, R., Nieto, R., Vicente‐Serrano, S. M., Drumond, A., & Gimeno, L. (2017). A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth System Dynamics Discussions, 8, 653–675. doi: 10.5194/esd‐2017‐21,2017.
58 Taylor, C. M., Fink, A. H., Klein, C., Parker, D. J., Guichard, F., Harris, P. P., & Knapp, K. R. (2018). Earlier seasonal onset of intense mesoscale convective systems in the Congo Basin since 1999. Geophysical Research Letters, 45, 13458–13467. https://doi.org/10.1029/2018GL080516
59 Todd, M. C., & Washington, R. (2004). Climate variability in central equatorial Africa: influence from the Atlantic sector. Geophysical Research Letters, 31, L23202. https://doi.org/10.1029/2004GL020975
60 Tripoli, G. J. (1986). A Numerical Investigation of an Orogenic Mesoscale Convective System. Ph.D. dissertation, Colorado State University, 290 pp.
61 Tripoli, G. J., & Cotton, W. R. (1989a). Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Monthly Weather Reviews, 117, 273–304. https://doi.org/10.1175/1520‐0493(1989)117<0273:NSOAOO>2.0.CO;2
62 Tripoli, G. J., & Cotton, W. R. (1989b). Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Monthly Weather Reviews, 117, 305–328. https://doi.org/10.1175/1520‐0493(1989)117<0305:NSOAOO>2.0.CO;2
63 Uccellini, L. W., & Johnson, D. R. (1979). The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Monthly Weather Reviews, 107, 682–703. https://doi.org/10.1175/1520‐0493(1979)107<0682:TCOUAL>2.0.CO;2
64 Washington, R., James, R., Pearce, H., Pokam, W., & Moufouma‐Okia, W. (2013). Congo rainfall climatology: can we believe the climate models? Philosophical Transactions of the Royal Society B, 368, 20120296. doi: 10.1098/rstb.2012.0296
65 Williams, A. P., & Funk, C. (2011). A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics, 37, 2417–2435. https://doi.org/10.1007/s00382‐010‐0984‐y
66 Xie, P, Janowiak, J. E., Arkin, P. A., Adler, R., Gruber, A., Ferraro, R., et al. (2003). GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. Journal of Climate, 16, 2197–2214. https://doi.org/10.1175/2769.1
67 Xie, P., & Arkin, P. A. (1997). Global precipitation: A 17‐year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78, 2537–2558. https://doi.org/10.1175/1520‐0477(1997)078<2539:GPAYMA>2.0.CO;2
68 Xie, P., Joyce, R. J., Wu, S., Yoo, S.‐H., Yarosh, Y., Sun, F., & Lin, R. (2017). Reprocessed, bias‐corrected CMORPH CRT global high resolution estimates form 1998. Journal of Hydrometeorology, 18, 1617–1641. https://doi.org/10.1175/JHM‐D‐16‐0168.1
69 Yang, W., Seager, R., Cane, M. A., & Lyon, B. (2015). The annual cycle of East African precipitation. Journal of Climate, 28, 2385–2404. https://doi.org/10.1175/JCLI‐D‐14‐00484.1
70 Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Yi, Y., et al. (2014). Widespread decline of Congo rainforest greenness in the past decade. Nature, 509. doi: 10.1038/nature13265
71 Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W., & Yorty, D. P. (2006). Where are the most intense thunderstorms on earth? Bulletin of the American Meteorological Society, 87, 1057–1071. https://doi.org/10.1175/BAMS‐87‐8‐1057
72 Zulkafli, Z., Buytaert, W., Onof, C., Manz, B., Tarnavskky, E., Lavado, W., & Guyot, J.‐L. (2014). A comparative performance analysis of TRMM3B42 (TMPA) Versions 6 and 7 for hydrological applications over Andean‐Amazon River basins. Journal of Hydrometeorology, 15, 581–592. https://doi.org/10.1175/JHM‐D‐13‐094.1