Читать книгу Smart Charging Solutions for Hybrid and Electric Vehicles - Группа авторов - Страница 18
1.2.1 Uncoordinated Charging
ОглавлениеThe utility grid connecting to the load from a power source is designed to meet a particular region’s power demand. Further, the utility grid operators perform demand response or load distribution analysis to serve consumers with reliability. If an unprecedented load is added to the utility grid, the possibility of voltage fluctuations and blackouts increases [11]. Uncoordinated charging transpires when the EV’s charge is done in the form of unprecedented loads, i.e., the time to charge EVs is not scheduled in coordination with the utility grid [12, 13].
The impact of uncoordinated charging to the utility grid can be described in two ways: increased load demand and change in the shape of load profile. Increased load demand refers to the need for more kilowatts at a particular instant, as noted previously. In contrast, the change in shape of the load profile corresponds to a change in the timing of peak load and offpeak load hours. Literature reports that even a low adoption of EVs could significantly change the load profile and affect electricity infrastructure. The impacts of uncoordinated charging are not limited to the load demand and shape; phase imbalance, power quality issues, such as an increase in total harmonic distortion, increased power loss, line loading, and equipment degradation, such as transformers and circuit breakers, also impact the utility grid [11]. However, the impact of uncoordinated charging is seen on all three segments of the utility grid, namely, generation, transmission, and distribution systems, but the distribution section of the utility grid is the worst affected [14].